Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Microbiol ; 81(10): 339, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225833

RESUMO

Bacterial spores in materials and equipment pose significant biosecurity risks, making effective disinfection crucial. This study evaluated Ortho-phthalaldehyde (OPA) and a quaternary ammonia-glutaraldehyde solution (AG) for inactivating spores of Bacillus thuringiensis (BT), B. cereus (BC), and two strains of B. velezensis (BV1 and BV2). Spores of BV1 and BT were treated with 22.5 mg/m3 OPA by dry fumigation or 1 mg/mL AG by spray for 20 min, according to the manufacturer's recommendation. As no sporicidal effect was observed, OPA was tested at 112.5 mg/m3 for 40 min, showing effectiveness for BT but not for BV1. Minimum bactericidal concentration (MBC) tests revealed higher MBC values for glutaraldehyde, prompting an overnight test with 112.5 mg/m3 OPA by dry fumigation and 50 mg/mL AG by spray, using formaldehyde as a control. AG reduced all Bacillus strains, but with limited sporicidal effect. OPA was sporicidal for BT and BV1 but not for BC and BV2, indicating a strain-dependent effect. Formaldehyde performed better overall but did not completely inactivate BV2 spores. Our findings suggest that OPA and AG have potential as formaldehyde replacements in wet disinfection procedures.


Assuntos
Bacillus thuringiensis , Bacillus , Desinfetantes , Glutaral , Esporos Bacterianos , Desinfetantes/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Bacillus/efeitos dos fármacos , Bacillus/fisiologia , Glutaral/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/fisiologia , Testes de Sensibilidade Microbiana , o-Ftalaldeído/farmacologia , Bacillus cereus/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Desinfecção/métodos
2.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273410

RESUMO

Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matrix adhesion proteins, and transport proteins of enamel. Due to the wide variety of phenotypes, the diagnosis of AI is complex, requiring a genetic test to characterize it better. Thus, there is a demand for developing low-cost, noninvasive, and accurate platforms for AI diagnostics. This case-control pilot study aimed to test salivary vibrational modes obtained in attenuated total reflection fourier-transformed infrared (ATR-FTIR) together with machine learning algorithms: linear discriminant analysis (LDA), random forest, and support vector machine (SVM) could be used to discriminate AI from control subjects due to changes in salivary components. The best-performing SVM algorithm discriminates AI better than matched-control subjects with a sensitivity of 100%, specificity of 79%, and accuracy of 88%. The five main vibrational modes with higher feature importance in the Shapley Additive Explanations (SHAP) were 1010 cm-1, 1013 cm-1, 1002 cm-1, 1004 cm-1, and 1011 cm-1 in these best-performing SVM algorithms, suggesting these vibrational modes as a pre-validated salivary infrared spectral area as a potential biomarker for AI screening. In summary, ATR-FTIR spectroscopy and machine learning algorithms can be used on saliva samples to discriminate AI and are further explored as a screening tool.


Assuntos
Amelogênese Imperfeita , Aprendizado de Máquina , Saliva , Humanos , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Saliva/metabolismo , Saliva/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Feminino , Estudos de Casos e Controles , Masculino , Algoritmos , Adulto , Máquina de Vetores de Suporte , Projetos Piloto , Análise Discriminante , Biomarcadores , Triagem/métodos , Adolescente , Adulto Jovem
3.
J Med Virol ; 93(9): 5630-5634, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33934387

RESUMO

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly widespread worldwide becoming one of the major global public health issues of the last centuries. Currently, COVID-19 vaccine rollouts are finally upon us carrying the hope of herd immunity once a sufficient proportion of the population has been vaccinated or infected, as a new horizon. However, the emergence of SARS-CoV-2 variants brought concerns since, as the virus is exposed to environmental selection pressures, it can mutate and evolve, generating variants that may possess enhanced virulence. Codon usage analysis is a strategy to elucidate the evolutionary pressure of the viral genome suffered by different hosts, as possible cause of the emergence of new variants. Therefore, to get a better picture of the SARS-CoV-2 codon bias, we first identified the relative codon usage rate of all Betacoronaviruses lineages. Subsequently, we correlated putative cognate transfer ribonucleic acid (tRNAs) to reveal how those viruses adapt to hosts in relation to their preferred codon usage. Our analysis revealed seven preferred codons located in three different open reading frame which appear preferentially used by SARS-CoV-2. In addition, the tRNA adaptation analysis indicates a wide strategy of competition between the virus and mammalian as principal hosts highlighting the importance to reinforce the genomic monitoring to prompt identify any potential adaptation of the virus into new potential hosts which appear to be crucial to prevent and mitigate the pandemic.


Assuntos
Betacoronavirus/genética , Uso do Códon , Infecções por Coronavirus/virologia , Genoma Viral , Mamíferos , SARS-CoV-2/genética , Animais , COVID-19 , Vacinas contra COVID-19 , Códon , Interações Hospedeiro-Patógeno , Humanos , Mutação , Fases de Leitura Aberta , Filogenia , RNA de Transferência
4.
BMC Vet Res ; 13(1): 177, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619055

RESUMO

BACKGROUND: Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira spp. This zoonotic disease is distributed globally and affects domestic animals, including cattle. Leptospira interrogans serogroup Sejroe serovar Hardjo and Leptospira borgpetersenii serogroup Sejroe serovar Hardjo remain important species associated with this reproductive disease in livestock production. Previous studies on Brazilian livestock have reported that L. interrogans serovar Hardjo is the most prevalent leptospiral agent in this country and is related to clinical signs of leptospirosis, which lead to economic losses in production. Here, we described the isolation of three clinical strains (Norma, Lagoa and Bolivia) obtained from leptospirosis outbreaks that occurred in Minas Gerais state in 1994 and 2008. RESULTS: Serological and molecular typing using housekeeping (secY and 16SrRNA) and rfb locus (ORF22 and ORF36) genes were applied for the identification and comparative analysis of Leptospira spp. Our results identified the three isolates as L. interrogans serogroup Sejroe serovar Hardjo and confirmed the occurrence of this bacterial strain in Brazilian livestock. Genetic analysis using ORF22 and ORF36 grouped the Leptospira into serogroup Sejroe and subtype Hardjoprajitno. Genetic approaches were also applied to compare distinct serovars of L. interrogans strains by verifying the copy numbers of the IS1500 and IS1533 insertion sequences (ISs). The IS1500 copy number varied among the analyzed L. interrogans strains. CONCLUSION: This study provides evidence that L. interrogans serogroup Sejroe serovar Hardjo subtype Hardjoprajitno causes bovine leptospirosis in Brazilian production. The molecular results suggested that rfb locus (ORF22 and ORF36) could improve epidemiological studies by allowing the identification of Leptospira spp. at the serogroup level. Additionally, the IS1500 and IS1533 IS copy number analysis suggested distinct genomic features among closely related leptospiral strains.


Assuntos
Doenças dos Bovinos/microbiologia , Surtos de Doenças/veterinária , Leptospira interrogans/isolamento & purificação , Leptospirose/veterinária , Animais , Brasil/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Elementos de DNA Transponíveis , DNA Bacteriano , DNA Ribossômico , Genes Bacterianos , Loci Gênicos , Leptospira interrogans/classificação , Leptospira interrogans/genética , Leptospirose/epidemiologia , Leptospirose/microbiologia , Tipagem Molecular , Fases de Leitura Aberta
5.
Cell Rep ; 30(7): 2275-2283.e7, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075736

RESUMO

Zika virus (ZIKV) has caused an explosive epidemic linked to severe clinical outcomes in the Americas. As of June 2018, 4,929 ZIKV suspected infections and 46 congenital syndrome cases had been reported in Manaus, Amazonas, Brazil. Although Manaus is a key demographic hub in the Amazon region, little is known about the ZIKV epidemic there, in terms of both transmission and viral genetic diversity. Using portable virus genome sequencing, we generated 59 ZIKV genomes in Manaus. Phylogenetic analyses indicated multiple introductions of ZIKV from northeastern Brazil to Manaus. Spatial genomic analysis of virus movement among six areas in Manaus suggested that populous northern neighborhoods acted as sources of virus transmission to other neighborhoods. Our study revealed how the ZIKV epidemic was ignited and maintained within the largest urban metropolis in the Amazon. These results might contribute to improving the public health response to outbreaks in Brazil.


Assuntos
Infecção por Zika virus/virologia , Zika virus/genética , Brasil/epidemiologia , Monitoramento Epidemiológico , Feminino , Genômica/métodos , Humanos , Masculino , Infecção por Zika virus/epidemiologia
6.
Emerg Microbes Infect ; 9(1): 1824-1834, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32726185

RESUMO

The recent emergence of a coronavirus (SARS-CoV-2), first identified in the Chinese city of Wuhan in December 2019, has had major public health and economic consequences. Although 61,888 confirmed cases were reported in Brazil by 28 April 2020, little is known about the SARS-CoV-2 epidemic in this country. To better understand the recent epidemic in the second most populous state in southeast Brazil - Minas Gerais (MG) - we sequenced 40 complete SARS-CoV-2 genomes from MG cases and examined epidemiological data from three Brazilian states. Both the genome analyses and the geographical distribution of reported cases indicate for multiple independent introductions into MG. Epidemiological estimates of the reproductive number (R) using different data sources and theoretical assumptions suggest the potential for sustained virus transmission despite a reduction in R from the first reported case to the end of April 2020. The estimated date of SARS-CoV-2 introduction into Brazil was consistent with epidemiological data from the first case of a returned traveller from Lombardy, Italy. These findings highlight the nature of the COVID-19 epidemic in MG and reinforce the need for real-time and continued genomic surveillance strategies to better understand and prepare for the epidemic spread of emerging viral pathogens..


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Genoma Viral , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Adulto , Idoso , Brasil/epidemiologia , COVID-19 , Feminino , Geografia , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Sequenciamento Completo do Genoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa