Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Hered ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757192

RESUMO

The underlying processes behind the formation, evolution, and long-term maintenance of multiple sex chromosomes have been largely neglected. Among vertebrates, fishes represent the group with the highest diversity of multiple sex chromosome systems and, with six instances, the Neotropical fish genus Harttia stands out by presenting the most remarkable diversity. However, although the origin mechanism of their sex chromosome systems is well discussed, little is known about the importance of some repetitive DNA classes in the differentiation of multiple systems. In this work, by employing a combination of cytogenetic and genomic procedures, we evaluated the satellite DNA composition of H. carvalhoi with a focus on their role in the evolution, structure, and differentiation process of the rare XY1Y2 multiple sex chromosome system. The genome of H. carvalhoi contains a total of 28 satellite DNA families, with the A+T content ranging between 38,1 and 68,1% and the predominant presence of long satellites. The in situ hybridization experiments detected 15 satellite DNAs with positive hybridization signals mainly on centromeric and pericentromeric regions of almost all chromosomes or clustered on a few pairs. Five of them presented clusters on X, Y1, and/or Y2 sex chromosomes which were therefore selected for comparative hybridization in the other three congeneric species. We found several conserved satellites accumulated on sex chromosomes and also in regions that were involved in chromosomal rearrangements. Our results provide a new contribution of satellitome studies in multiple sex chromosome systems in fishes and represent the first satellitome study for a Siluriformes species.

2.
Chromosoma ; 131(1-2): 29-45, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35099570

RESUMO

Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.


Assuntos
Caraciformes , Animais , Caraciformes/genética , DNA , Evolução Molecular , Feminino , Peixes/genética , Genoma , Genômica , Cromossomos Sexuais/genética
3.
J Mol Evol ; 91(6): 976-989, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010517

RESUMO

Adaptation to different salinity environments can enhance morphological and genomic divergence between related aquatic taxa. Species of prawns in the genus Macrobrachium naturally inhabit different osmotic niches and possess distinctive lifecycle traits associated with salinity tolerance. This study was conducted to investigate the patterns of adaptive genomic divergence during freshwater colonization in 34 Macrobrachium species collected from four continents; Australia, Asia, North and South America. Genotyping-by-sequencing (GBS) technique identified 5018 loci containing 82,636 single nucleotide polymorphisms (SNPs) that were used to reconstruct a phylogenomic tree. An additional phylogeny was reconstructed based on 43 candidate genes, previously identified as being potentially associated with freshwater adaptation. Comparison of the two phylogenetic trees revealed contrasting topologies. The GBS tree indicated multiple independent continent-specific invasions into freshwater by Macrobrachium lineages following common marine ancestry, as species with abbreviated larval development (ALD), i.e., species having a full freshwater life history, appeared reciprocally monophyletic within each continent. In contrast, the candidate gene tree showed convergent evolution for all ALD species worldwide, forming a single, well-supported clade. This latter pattern is likely the result of common evolutionary pressures selecting key mutations favored in continental freshwater habitats Results suggest that following multiple independent invasions into continental freshwaters at different evolutionary timescales, Macrobrachium taxa experienced adaptive genomic divergence, and in particular, convergence in the same genomic regions with parallel shifts in specific conserved phenotypic traits, such as evolution of larger eggs with abbreviated larval developmental.


Assuntos
Palaemonidae , Animais , Palaemonidae/genética , Filogenia , Genômica , Água Doce , Genoma/genética
4.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686460

RESUMO

Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.


Assuntos
Caraciformes , Animais , DNA Satélite/genética , Cromossomos Sexuais/genética , Aberrações Cromossômicas , Cariotipagem
5.
Chromosome Res ; 29(3-4): 391-416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34694531

RESUMO

Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.


Assuntos
Caraciformes , Animais , Caraciformes/genética , Mapeamento Cromossômico , Coloração Cromossômica , Hibridização Genômica Comparativa , Evolução Molecular , Feminino , Humanos , Cromossomos Sexuais/genética
6.
Chromosoma ; 129(3-4): 275-283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33123817

RESUMO

Darevskia rostombekowi, the most outstanding of the seven known parthenogenetic species in the genus Darevskia, is the result of an ancestral cross between two bisexual species Darevskia raddei and Darevskia portschinskii. The chromosomal set of this species includes a unique submetacentric autosomal chromosome; the origin of this chromosome was unresolved as only acrocentric chromosomes are described in the karyotypes of Darevskia genus normally. Here, we applied a suite of molecular cytogenetic techniques, including the mapping of telomeric (TTAGGG) n repeats using fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and whole-chromosome painting (WCP) in both D. rostombekowi and parental (D. portschinskii and D. raddei) species. The obtained results in total suggest that a de novo chromosomal rearrangement via Robertsonian translocation (centric fusion) between two maternal (D. raddei) acrocentric chromosomes of different size was involved in the formation of this unique submetacentric chromosome present in the parthenogenetic species D. rostombekowi. Our findings provide new data in specific and rapid evolutional processes of a unisexual reptile species karyotype.


Assuntos
Evolução Molecular , Hibridização Genética , Cariótipo , Lagartos/genética , Partenogênese/genética , Translocação Genética , Animais , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Feminino , Hibridização in Situ Fluorescente , Herança Materna , Cromossomos Sexuais , Telômero
7.
Mol Reprod Dev ; 88(2): 119-127, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33438277

RESUMO

Parthenogenetic species of Caucasian rock lizards of the genus Darevksia are important evidence for reticulate evolution and speciation by hybridization in vertebrates. Female-only lineages formed through interspecific hybridization have been discovered in many groups. Nevertheless, critical mechanisms of oogenesis and specifics of meiosis that provide long-term stability of parthenogenetic species are still unknown. Here we report cytogenetic characteristics of somatic karyotypes and meiotic prophase I nuclei in the diploid parthenogenetic species Darevskia unisexualis from the new population "Keti" in Armenia which contains an odd number of chromosomes 2n = 37, instead of the usual 2n = 38. We revealed 36 acrocentric chromosomes and a single metacentric autosomal chromosome, resulting from Robertsonian translocation. Comparative genomic hybridization revealed that chromosome fusion occurred between two chromosomes inherited from the maternal species, similar to another parthenogenetic species D. rostombekowi. To trace the chromosome behaviour in meiosis, we performed an immunocytochemical study of primary oocytes' spread nuclei and studied chromosome synapsis during meiotic prophase I in D. unisexualis based on analysis of synaptonemal complexes (SCs). We found meiotic SC-trivalent composed of one metacentric and two acrocentric chromosomes. We confirmed that the SC was assembled between homeologous chromosomes inherited from two parental species. Immunostaining of the pachytene and diplotene nuclei revealed a mismatch repair protein MLH1 loaded to all autosomal SC bivalents. Possible mechanisms of meiotic recombination between homeologous chromosomes are discussed.


Assuntos
Lagartos/genética , Prófase Meiótica I/genética , Proteína 1 Homóloga a MutL/genética , Animais , Células Cultivadas , Reparo de Erro de Pareamento de DNA , Rearranjo Gênico , Lagartos/fisiologia , Partenogênese , Complexo Sinaptonêmico
8.
Ecotoxicol Environ Saf ; 209: 111835, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383344

RESUMO

The Amazon aquatic ecosystems have been modified by the human population growth, going through changes in their water bodies and aquatic biota. The spectacled alligator (Caiman crocodilus crocodilus) has a wide distribution and adaptability to several environments, even those polluted ones. This study aimed to investigate if a Caiman species living in urban streams of Manaus city (Amazonas State, Brazil) is affected by environmental pollution. For that, it was used classical and molecular cytogenetic procedures, in addition to micronucleus and comet assays. Although the karyotype macrostructure remains unaltered (2 n = 42 chromosomes; 24 t + 18 m/sm; NF = 60), the genotoxic analysis and the cytogenetic mapping of repetitive DNA sequences demonstrated that polluted environments alter the genome of the specimens, affecting both the chromosomal organization and the genetic material.


Assuntos
Jacarés e Crocodilos/fisiologia , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Dano ao DNA , Ecossistema , Humanos
9.
Biol Reprod ; 103(6): 1289-1299, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32940693

RESUMO

In animals, spermatogonial transplantation in sterile adult males is widely developed; however, despite its utility, ovarian germ cell transplantation is not well developed. We previously showed that the interspecific hybrid offspring of sciaenid was a suitable model for germ cell transplantation studies as they have germ cell-less gonads. However, all these gonads have testis-like characteristics. Here, we tested whether triploidization in hybrid embryos could result in germ cell-less ovary development. Gonadal structure dimorphism and sex-specific gene expression patterns were examined in 6-month-old triploid hybrids (3nHybs). Thirty-one percent of 3nHybs had germ cell-less gonads with an ovarian cavity. cyp19a1a and foxl2, ovarian differentiation-related genes, were expressed in these gonads, whereas dmrt1 and vasa were not expressed, suggesting ovary-like germ cell-less gonad development. Some (26%) 3nHybs had testis-like germ cell-less gonads. Ovarian germ cells collected from homozygous green fluorescent protein (GFP) transgenic blue drum (BD) (Nibea mitsukurii) were transplanted into 6-month-old 3nHybs gonads via the urogenital papilla or oviduct. After 9 months, the recipients were crossed with wild type BD. Among the six 3nHyb recipients that survived, one female and one male produced fertile eggs and motile sperm carrying gfp-specific DNA sequences. Progeny tests revealed that all F1 offspring possessed gfp-specific DNA sequences, suggesting that these recipients produced only donor-derived eggs or sperm. Histological observation confirmed donor-derived gametogenesis in the 3nHyb recipients' gonads. Overall, triploidization reduces male-biased sex differentiation in germ cell-less gonads. We report, for the first time, donor-derived egg production in an animal via direct ovarian germ cell transplantation into a germ cell-less ovary.


Assuntos
Peixes/genética , Peixes/fisiologia , Células Germinativas/transplante , Gônadas/citologia , Triploidia , Animais , Animais Geneticamente Modificados , Aromatase/genética , Aromatase/metabolismo , Temperatura Baixa , RNA Helicases DEAD-box , Embrião não Mamífero , Feminino , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Regulação da Expressão Gênica , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438504

RESUMO

Neotropical cichlid fishes are one of the most diversified and evolutionarily successful species assemblages. Extremely similar forms and intraspecific polychromatism present challenges for the taxonomy of some of these groups. Several species complexes have a largely unknown origin and unresolved evolutionary processes. Dwarf cichlids of the genus Apistogramma, comprising more than a hundred species, exhibit intricate taxonomic and biogeographic patterns, with both allopatric and sympatric distributions. However, karyotype evolution and the role of chromosomal changes in Apistogramma are still unknown. In the present study, nine South American Apistogramma species were analyzed using conventional cytogenetic methods and the mapping of repetitive DNA sequences [18S rDNA, 5S rDNA, and (TTAGGG)n] by fluorescence in situ hybridization (FISH). Our results showed that Apistogramma has unique cytogenetic characteristics in relation to closely related groups, such as a reduced 2n and a large number of bi-armed chromosomes. Interspecific patterns revealed a scenario of remarkable karyotypic changes, including a reduction of 2n, the occurrence of B-chromosomes and evolutionary dynamic of rDNA tandem repeats. In addition to the well-known pre-zygotic reproductive isolation, the karyotype reorganization in the genus suggests that chromosomal changes could act as postzygotic barriers in areas where Apistogramma congeners overlap.


Assuntos
Sequências Repetitivas de Ácido Nucleico/genética , Animais , Ciclídeos , DNA Ribossômico/genética , Evolução Molecular , Cariótipo
11.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331072

RESUMO

The catfish family Siluridae contains 107 described species distributed in Asia, but with some distributed in Europe. In this study, karyotypes and other chromosomal characteristics of 15 species from eight genera were examined using conventional and molecular cytogenetic protocols. Our results showed the diploid number (2n) to be highly divergent among species, ranging from 2n = 40 to 92, with the modal frequency comprising 56 to 64 chromosomes. Accordingly, the ratio of uni- and bi-armed chromosomes is also highly variable, thus suggesting extensive chromosomal rearrangements. Only one chromosome pair bearing major rDNA sites occurs in most species, except for Wallago micropogon, Ompok siluroides, and Kryptoterus giminus with two; and Silurichthys phaiosoma with five such pairs. In contrast, chromosomes bearing 5S rDNA sites range from one to as high as nine pairs among the species. Comparative genomic hybridization (CGH) experiments evidenced large genomic divergence, even between congeneric species. As a whole, we conclude that karyotype features and chromosomal diversity of the silurid catfishes are unusually extensive, but parallel some other catfish lineages and primary freshwater fish groups, thus making silurids an important model for investigating the evolutionary dynamics of fish chromosomes.


Assuntos
Peixes-Gato/genética , Variação Genética , Genoma , Genômica , Cariótipo , Sequências Repetitivas de Ácido Nucleico , Animais , Peixes-Gato/classificação , Bandeamento Cromossômico , Hibridização Genômica Comparativa , Análise Citogenética , Genômica/métodos , Hibridização in Situ Fluorescente
12.
Genet Mol Biol ; 41(1): 98-106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29473932

RESUMO

An extensive karyotype variation is found among species belonging to the Columbidae family of birds (Columbiformes), both in diploid number and chromosomal morphology. Although clusters of repetitive DNA sequences play an important role in chromosomal instability, and therefore in chromosomal rearrangements, little is known about their distribution and amount in avian genomes. The aim of this study was to analyze the distribution of 11 distinct microsatellite sequences, as well as clusters of 18S rDNA, in nine different Columbidae species, correlating their distribution with the occurrence of chromosomal rearrangements. We found 2n values ranging from 76 to 86 and nine out of 11 microsatellite sequences showed distinct hybridization signals among the analyzed species. The accumulation of microsatellite repeats was found preferentially in the centromeric region of macro and microchromosomes, and in the W chromosome. Additionally, pair 2 showed the accumulation of several microsatellites in different combinations and locations in the distinct species, suggesting the occurrence of intrachromosomal rearrangements, as well as a possible fission of this pair in Geotrygon species. Therefore, although birds have a smaller amount of repetitive sequences when compared to other Tetrapoda, these seem to play an important role in the karyotype evolution of these species.

13.
Genetica ; 144(2): 203-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26932937

RESUMO

The Dascyllus genus consists of 11 species spread over vast regions of the Indo-Pacific, showing remarkable reductions in the diploid chromosome numbers (2n). The present study analyzed the karyotypes and other chromosomal characteristics of D. trimaculatus (2n = 48; 2st + 46a; NF = 50), D. carneus (2n = 48; 2st + 46a; NF = 50) and D. aruanus (2n = 30; 18m + 2st + 10a; NF = 50) from the Thailand Gulf (Pacific Ocean) and D. melanurus (2n = 48; 2st + 46a; NF = 50) from the Andaman Sea (Indian Ocean), employing conventional cytogenetic analyses and the chromosomal mapping of repetitive DNAs, using 18S and 5S rDNA, telomeric sequences and (CA)15, (GA)15, and (CAA)10 microsatellites as probes. The C-positive heterochromatin was found in the centromeric regions of most chromosomal pairs and 18S rDNA phenotypes were single in all species. However, in D. aruanus (2n = 30), which harbors nine metacentric pairs; the 5S rDNA sites were located in the centromeric region of the shortest one. The mapping of the telomeric sequences in D. aruanus revealed the presence of interstitial telomeric sites (ITS) in the centromeric region of four metacentric pairs, with one of these pairs also displaying an additional ITS in the long arms. Distinct chromosomal markers confirmed the reduction of the 2n by chromosomal fusions, highlighting the precise characterization of these rearrangements by the cytogenetic mapping of the repetitive DNAs.


Assuntos
Evolução Molecular , Cariótipo , Perciformes/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Mapeamento Cromossômico , Diploide , Feminino , Oceano Índico , Masculino , Repetições de Microssatélites , Oceano Pacífico , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Análise de Sequência de DNA , Telômero/genética
14.
Cytogenet Genome Res ; 142(3): 151-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714101

RESUMO

Small supernumerary marker chromosomes (sSMC) are known for being present in mosaic form as 47,+mar/46 in >50% of the cases with this kind of extra chromosomes. However, no detailed studies have been done for the mitotic stability of sSMC so far, mainly due to the lack of a corresponding in vitro model system. Recently, we established an sSMC-cell bank (Else Kröner-Fresenius-sSMC-cellbank) with >150 cell lines. Therefore, 93 selected sSMC cases were studied here for the presence of the corresponding marker chromosomes before and after Epstein-Barr virus-induced immortalization. The obtained results showed that dicentric inverted duplicated-shaped sSMC are by far more stable in vitro than monocentric centric minute- or ring-shaped sSMC. Simultaneously, a review of the literature revealed that a comparable shape-dependent mitotic stability can be found in vivo in sSMC carriers. Additionally, a possible impact of the age of the sSMC carrier on mitotic stability was found: sSMC cell lines established from patients between 10-20 years of age were predominantly mitotically unstable. The latter finding was independent of the sSMC shape. The present study shows that in vitro models can lead to new and exciting insights into the biology of this genetically and clinically heterogeneous patient group.


Assuntos
Instabilidade Cromossômica , Transtornos Cromossômicos/genética , Mitose/genética , Adolescente , Adulto , Linhagem Celular , Criança , Pré-Escolar , Bandeamento Cromossômico , Feminino , Marcadores Genéticos , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Cariotipagem , Masculino , Mosaicismo , Adulto Jovem
15.
PLoS One ; 19(7): e0305828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024404

RESUMO

The family Cyprinidae is the largest freshwater fish group with 377 genera and over 3,000 described species. However, this group of fish has very limited cytogenetics and advanced molecular cytogenetics information. Therefore, in this study the karyotypes and other chromosomal characteristics of 15 species in the tribe Systomini (Cyprininae) were examined using Ag-NOR staining along with fluorescence in situ hybridization (5S and 18S rDNA). All species share a similar karyotype (2n = 50; NF = 88-100) in both sexes and no differentiated sex chromosome was observed. Chromosomes bearing NOR sites ranged from one to four pairs among the species, mostly mapped adjacent to telomeres in the short arms of distinct pairs in all analyzed species. This difference indicates an extensive rearrangement of chromosomes including genomic differences. The use of the 5S and 18S rDNA probe confirmed the Ag-NOR sites interstitially located in the telomeric regions of distinct chromosomes, characterizing an interspecies variation of these sites. In most of its analyzed species, the signals of 18S rDNA probe corresponded to the Ag-NOR regions, except in Barbonymus altus, B. gonionotus, B. schwanenfeldii and Puntius brevis having these signals on the same as Ag-NOR regions and other sites.


Assuntos
Cyprinidae , Hibridização in Situ Fluorescente , Cariótipo , Animais , Cyprinidae/genética , Cyprinidae/classificação , Masculino , Feminino , Evolução Molecular , Cariotipagem , RNA Ribossômico 18S/genética , Especificidade da Espécie , Cromossomos/genética , DNA Ribossômico/genética , Telômero/genética
16.
BMC Ecol Evol ; 24(1): 72, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816840

RESUMO

Ctenoluciidae is a Neotropical freshwater fish family composed of two genera, Ctenolucius (C. beani and C. hujeta) and Boulengerella (B. cuvieri, B. lateristriga, B. lucius, B. maculata, and B. xyrekes), which present diploid number conservation of 36 chromosomes and a strong association of telomeric sequences with ribosomal DNAs. In the present study, we performed chromosomal mapping of microsatellites and transposable elements (TEs) in Boulengerella species and Ctenolucius hujeta. We aim to understand how those sequences are distributed in these organisms' genomes and their influence on the chromosomal evolution of the group. Our results indicate that repetitive sequences may had an active role in the karyotypic diversification of this family, especially in the formation of chromosomal hotspots that are traceable in the diversification processes of Ctenoluciidae karyotypes. We demonstrate that (GATA)n sequences also accumulate in the secondary constriction formed by the 18 S rDNA site, which shows consistent size heteromorphism between males and females in all Boulengerella species, suggesting an initial process of sex chromosome differentiation.


Assuntos
Caraciformes , Mapeamento Cromossômico , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Animais , Caraciformes/genética , Masculino , Feminino , Retroelementos/genética , Sequências Repetitivas de Ácido Nucleico/genética , Evolução Molecular , Repetições de Microssatélites/genética , Cariótipo , Cromossomos/genética
17.
Heliyon ; 10(6): e27435, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545167

RESUMO

The butterflyfishes (Chaetodontidae), emblematic inhabitants of coral reef environments, encompass the majority of known coralivorous species and show one of the highest hybridization rates known among vertebrates, making them an important evolutionary model. The vast knowledge about their life history and phylogenetic relationships contrasts with scarce information on their karyotype evolution. Aiming to expand the cytogenetic data of butterflyfishes and evaluate their karyotype evolution in association with evolutionary aspects, we conducted an extensive cytogenetic analysis in 20 species (Heniochus pleurotaenia and 19 Chaetodon spp.) from the Atlantic and Indo-Pacific regions, comparing the karyotype macrostructure and the arrangement of the 18S and 5S rDNA repetitive DNA classes in their chromosomes. The results demonstrate that butterflyfishes underwent a period of karyotypic stasis, as evidenced by their homoploid and structurally identical basal karyotype, which has 2n = 48 acrocentric chromosomes and is shared by 90% of species. Only C. trifascialis (2n = 48; FN = 50) and C. andamanensis (2n = 48; FN = 52) stood out because they both had karyotypes that diverged due to pericentric inversions. The microstructural arrays of 18S rDNA and 5S rDNA sequences were primarily comprised by single and independent loci on homologous chromosomes, indicating that there was little reshuffling among sets of orthologue chromosomes of species. Geographical comparisons revealed similar karyotypes between individuals of C. striatus from the Greater Caribbean and those of the coast of Brazil, corroborating previous data of gene flow through Amazon/Orinoco plume. The conservative chromosomal patterns in the butterflyfishes, likely overcome the limitations related to segregation and pairing of heterospecific complements and reinforce their contribution to the high degree of hybrid viability and introgression in Chaetodon species.

19.
BMC Ecol Evol ; 24(1): 51, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654159

RESUMO

BACKGROUND: Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS: From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION: The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.


Assuntos
Paleógnatas , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Paleógnatas/genética , Masculino , Feminino , Evolução Molecular , Repetições de Microssatélites/genética , Evolução Biológica , Hibridização Genômica Comparativa
20.
Genes (Basel) ; 14(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36833233

RESUMO

Ancistrus Kner, 1854, is the most diverse genus among the Ancistrini (Loricariidae) with 70 valid species showing a wide geographic distribution and great taxonomic and systematic complexity. To date, about 40 Ancistrus taxa have been karyotyped, all from Brazil and Argentina, but the statistic is uncertain because 30 of these reports deal with samples that have not yet been identified at the species level. This study provides the first cytogenetic description of the bristlenose catfish, Ancistrus clementinae Rendahl, 1937, a species endemic to Ecuador, aiming to verify whether a sex chromosome system is identifiable in the species and, if so, which, and if its differentiation is associated with the presence of repetitive sequences reported for other species of the family. We associated the karyotype analysis with the COI molecular identification of the specimens. Karyotype analysis suggested the presence of a ♂ZZ/♀ZW1W2 sex chromosome system, never detected before in Ancistrus, with both W1W2 chromosomes enriched with heterochromatic blocks and 18S rDNA, in addition to GC-rich repeats (W2). No differences were observed between males and females in the distribution of 5S rDNA or telomeric repeats. Cytogenetic data here obtained confirm the huge karyotype diversity of Ancistrus, both in chromosome number and sex-determination systems.


Assuntos
Peixes-Gato , Cromossomos Sexuais , Masculino , Animais , Feminino , Equador , Cariótipo , Peixes-Gato/genética , DNA Ribossômico/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa