RESUMO
Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.
Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
PURPOSE: To describe a recessively inherited cerebral small vessel disease, caused by loss-of-function variants in Nitrilase1 (NIT1). METHODS: We performed exome sequencing, brain magnetic resonance imaging, neuropathology, electron microscopy, western blotting, and transcriptomic and metabolic analyses in 7 NIT1-small vessel disease patients from 5 unrelated pedigrees. RESULTS: The first identified patients were 3 siblings, compound heterozygous for the NIT1 c.727C>T; (p.Arg243Trp) variant and the NIT1 c.198_199del; p.(Ala68∗) variant. The 4 additional patients were single cases from 4 unrelated pedigrees and were all homozygous for the NIT1 c.727C>T; p.(Arg243Trp) variant. Patients presented in mid-adulthood with movement disorders. All patients had striking abnormalities on brain magnetic resonance imaging, with numerous and massively dilated basal ganglia perivascular spaces. Three patients had non-lobar intracerebral hemorrhage between age 45 and 60, which was fatal in 2 cases. Western blotting on patient fibroblasts showed absence of NIT1 protein, and metabolic analysis in urine confirmed loss of NIT1 enzymatic function. Brain autopsy revealed large electron-dense deposits in the vessel walls of small and medium sized cerebral arteries. CONCLUSION: NIT1-small vessel disease is a novel, autosomal recessively inherited cerebral small vessel disease characterized by a triad of movement disorders, massively dilated basal ganglia perivascular spaces, and intracerebral hemorrhage.
Assuntos
Hemorragia Cerebral , Doenças de Pequenos Vasos Cerebrais , Transtornos dos Movimentos , Linhagem , Humanos , Feminino , Masculino , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Pessoa de Meia-Idade , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Hemorragia Cerebral/diagnóstico por imagem , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Alelos , Adulto , Idoso , Sistema Glinfático/patologia , Sistema Glinfático/diagnóstico por imagem , Sequenciamento do Exoma , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Aminoidrolases/genéticaRESUMO
BACKGROUND: Pain is an important symptom in Huntington's disease (HD), however, not systematically studied and understood. The objective of the current study is to assess the prevalence of pain, pain interference in daily activities, painful conditions, analgesic use and the severity of the pain burden across different disease stages and 'Age at symptom Onset' groups. Additionally, the association between pain and disease burden was investigated. METHODS: A cross-sectional analysis was conducted within two large data sets, which included different types of pain scales. Multivariable logistic regression analyses and analyses of variance were performed to compare the pain levels with those in the general population. The analyses were adjusted for sex and age. Locally Estimated Scatterplot Smoothing was used to test the association between pain and the HD pathology score: a measure of disease burden. RESULTS: The mean prevalence of pain in the HD population was 40% and for pain interference around 35% in both data sets. Patients in the early, middle and late stage of HD experience more pain burden compared with what is reported in patients with chronic pain (p<0.01). A positive and significant association was demonstrated between pain and disease burden. Patients in late stage HD with pain use significantly less analgesics compared with the general population (5% vs 13%, respectively (p<0.01)). CONCLUSIONS: Pain is a prevalent and important symptom in HD. Severe pain burden in the HD population is present and positively associated with disease burden. Risk for undertreatment with analgesics is nevertheless present. Awareness of pain in HD needs to be increased, both clinically and scientifically.
Assuntos
Doença de Huntington , Dor , Humanos , Doença de Huntington/epidemiologia , Doença de Huntington/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Prevalência , Adulto , Dor/epidemiologia , Idoso , Analgésicos/uso terapêutico , Efeitos Psicossociais da Doença , Medição da Dor , Atividades CotidianasRESUMO
BACKGROUND: In persons with Parkinson's Disease (PD) or certain forms of atypical parkinsonism, orthostatic hypotension is common and disabling, yet often underrecognized and undertreated. About half of affected individuals also exhibit supine hypertension. This common co-occurrence of both orthostatic hypotension and supine hypertension complicates pharmacological treatments as the treatment of the one can aggravate the other. Whole-body head-up tilt sleeping (HUTS) is the only known intervention that may improve both. Evidence on its effectiveness and tolerability is, however, lacking, and little is known about the implementability. METHODS: In this double-blind multicenter randomized controlled trial (phase II) we will test the efficacy and tolerability of HUTS at different angles in 50 people with PD or parkinsonism who have both symptomatic orthostatic hypotension and supine hypertension. All participants start with one week of horizontal sleeping and subsequently sleep at three different angles, each maintained for two weeks. The exact intervention will vary between the randomly allocated groups. Specifically, the intervention group will consecutively sleep at 6°, 12° and 18°, while the delayed treatment group starts with a placebo angle (1°), followed by 6° and 12°. We will evaluate tolerability using questionnaires and compliance to the study protocol. The primary endpoint is the change in average overnight blood pressure measured by a 24-hour ambulatory blood pressure recording. Secondary outcomes include orthostatic blood pressure, orthostatic tolerance, supine blood pressure, nocturia and various other motor and non-motor tests and questionnaires. DISCUSSION: We hypothesize that HUTS can simultaneously alleviate orthostatic hypotension and supine hypertension, and that higher angles of HUTS are more effective but less tolerable. The Heads-Up trial will help to clarify the effectiveness, tolerability, and feasibility of this intervention at home and can guide at-home implementation. TRIAL REGISTRATION: ClinicalTrials.gov NCT05551377; Date of registration: September 22, 2022.
Assuntos
Hipertensão , Hipotensão Ortostática , Intolerância Ortostática , Doença de Parkinson , Humanos , Hipotensão Ortostática/etiologia , Intolerância Ortostática/complicações , Monitorização Ambulatorial da Pressão Arterial/efeitos adversos , Hipertensão/complicações , Pressão Sanguínea/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como AssuntoRESUMO
Huntington disease is an autosomal dominant inherited brain disorder that typically becomes manifest in adulthood. Juvenile-onset Huntington disease refers to approximately 5% of patients with symptom onset before the age of 21 years. The causal factor is a pathologically expanded CAG repeat in the Huntingtin gene. Age at onset is inversely correlated with CAG repeat length. Juvenile-onset patients have distinct symptoms and signs with more severe pathology of involved brain structures in comparison with disease onset in adulthood. The aim of this review is to compare clinical and pathological features in juvenile- and adult-onset Huntington disease and to explore which processes potentially contribute to the observed differences. A specific focus is placed on molecular mechanisms of mutant huntingtin in early neurodevelopment and the interaction of a neurodegenerative disease and postnatal brain maturation. The importance of a better understanding of pathophysiological differences between juvenile- and adult-onset Huntington disease lies in development and implementation of new therapeutic strategies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Huntington , Transtornos dos Movimentos , Doenças Neurodegenerativas , Adulto , Idade de Início , Encéfalo/patologia , Humanos , Proteína Huntingtina/genética , Transtornos dos Movimentos/patologia , Doenças Neurodegenerativas/patologia , Adulto JovemAssuntos
Esclerose Lateral Amiotrófica , Doença de Huntington , Humanos , Doença de Huntington/epidemiologia , Doença de Huntington/genética , Doença de Huntington/patologia , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Pleiotropia Genética , Incidência , Encéfalo/patologia , Proteína Huntingtina/genéticaRESUMO
Startling acoustic stimuli (SAS) can accelerate reaction times ("StartReact" effect), but the underlying mechanism remains unclear. Both direct release of a subcortically stored motor program and a subcortically mediated trigger for a cortically stored motor program have been hypothesized. To distinguish between these hypotheses, we examined the StartReact effect in humans with pure hereditary spastic paraplegia (HSP). Delayed reaction times in HSP patients in trials both with and without a SAS would argue in favor of a cortically stored response. We instructed 12 HSP patients and 12 matched controls to respond as rapidly as possible to a visual imperative stimulus, in two different conditions: dorsiflexion of the dominant ankle; or flexion of the dominant wrist. In 25% of trials, a SAS was delivered simultaneously with the imperative stimulus. Before these tests, subjects received five SAS while standing to verify normal function of the reticulospinal tract in HSP. Latencies of startle responses in sternocleidomastoid and tibialis anterior muscles were comparable between patients and controls. During the ankle dorsiflexion task, HSP patients had an average 19 ms delay in reaction times compared with controls. Administration of a SAS accelerated ankle dorsiflexion in both groups, but more so in the patients, which completely normalized their latencies. The wrist flexion task yielded no differences in onset latencies between HSP patients and controls. The reticulospinal tract seems unaffected in HSP patients, because startle reflex onsets were normal. The corticospinal tract was affected, as reflected by delayed ankle dorsiflexion reaction times. These delayed onsets in HSP were normalized when the imperative stimulus was combined with a SAS, presumably through release of a subcortically stored motor program conveyed by the preserved reticulospinal tract.
Assuntos
Vias Eferentes/fisiologia , Córtex Motor/fisiologia , Tratos Piramidais/fisiologia , Tempo de Reação/fisiologia , Reflexo de Sobressalto/fisiologia , Paraplegia Espástica Hereditária/fisiopatologia , Estimulação Acústica/métodos , Adulto , Idoso , Eletromiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paraplegia Espástica Hereditária/diagnóstico , Adulto JovemRESUMO
We report on four families affected by a clinical presentation of complex hereditary spastic paraplegia (HSP) due to recessive mutations in DDHD2, encoding one of the three mammalian intracellular phospholipases A(1) (iPLA(1)). The core phenotype of this HSP syndrome consists of very early-onset (<2 years) spastic paraplegia, intellectual disability, and a specific pattern of brain abnormalities on cerebral imaging. An essential role for DDHD2 in the human CNS, and perhaps more specifically in synaptic functioning, is supported by a reduced number of active zones at synaptic terminals in Ddhd-knockdown Drosophila models. All identified mutations affect the protein's DDHD domain, which is vital for its phospholipase activity. In line with the function of DDHD2 in lipid metabolism and its role in the CNS, an abnormal lipid peak indicating accumulation of lipids was detected with cerebral magnetic resonance spectroscopy, which provides an applicable diagnostic biomarker that can distinguish the DDHD2 phenotype from other complex HSP phenotypes. We show that mutations in DDHD2 cause a specific complex HSP subtype (SPG54), thereby linking a member of the PLA(1) family to human neurologic disease.
Assuntos
Genes Recessivos , Mutação , Fosfolipases/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Sequência de Bases , Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Fácies , Feminino , Ordem dos Genes , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/diagnóstico , Adulto JovemRESUMO
BACKGROUND: Huntington's Disease is a rare neurodegenerative disorder in which appropriate medication management is essential. While many medications are prescribed based on expert knowledge, overviews of actual medication use in HD are sparse. OBJECTIVES: We provide a detailed overview of medication use and associated indications across HD disease stages, considering sex and regional differences. METHODS: Data from the largest observational HD study, ENROLL-HD, were used. We created HD-related medication and indication classes to identify medication trends in manifest, premanifest and control subjects. We studied medication use in adult, childhood- and adolescent-onset HD, incorporating disease stage (including phenoconverters), sex and regional differences. RESULTS: In 8546 manifest HD patients, 84.6% used medication (any type), with the average number of medications per user rising from 2.5 in premanifest HD to 5.2 in end stage disease. Antipsychotics (29.2%), SSRIs (27.5%) and painkillers (21.8%) were most often used. Medication use varied with disease progression. Several differences were observed between the sexes, and notably between Europe and Northern America as well. Medication use increased after phenoconversion (from 64.8% to 70.6%, P < 0.05), with the largest difference in antipsychotic use (4.4%-7.8%, P < 0.05). Medication patterns were different in childhood-onset HD, with no use of painkillers, less use of anti-chorea and antidepressant drugs, and more for aggression and irritability. CONCLUSIONS: Medication use in HD increases with disease progression, with varying types of medications prescribed based on disease stage, sex, and region of living. Recognizing these medication trends is vital for further personalized HD management.
RESUMO
Background: Juvenile-onset Huntington's disease (JHD) represents 1-5% of Huntington's disease (HD) patients, with onset before the age of 21. Pediatric HD (PHD) relates to a proportion of JHD patients that is still under 18 years of age. So far, both populations have been excluded from interventional trials. Objective: Describe the prevalence and incidence of JHD and PHD in the Netherlands and explore their ability to participate in interventional trials. Methods: The prevalence and incidence of PHD and JHD patients in the Netherlands were analyzed. In addition, we explored proportions of JHD patients diagnosed at pediatric versus adult age, their diagnostic delay, and functional and modelled (CAP100) disease stage in JHD and adult-onset HD patients at diagnosis. Results: The prevalence of JHD and PHD relative to the total manifest HD population in January 2024 was between 0.84-1.25% and 0.09-0.14% respectively. The mean incidence of JHD patients being diagnosed was between 0.85-1.28 per 1000 patient years and of PHD 0.14 per 1.000.000 under-aged person years. 55% of JHD cases received a clinical diagnosis on adult age. At diagnosis, the majority of JHD patients was functionally compromised and adolescent-onset JHD patients were significantly less independent compared to adult-onset HD patients. Conclusions: In the Netherlands, the epidemiology of JHD and PHD is lower than previously suggested. More than half of JHD cases are not eligible for trials in the PHD population. Furthermore, higher functional dependency in JHD patients influences their ability to participate in trials. Lastly, certain UHDRS functional assessments and the CAP100 score do not seem appropriate for this particular group.
Assuntos
Idade de Início , Doença de Huntington , Humanos , Doença de Huntington/epidemiologia , Países Baixos/epidemiologia , Prevalência , Adolescente , Masculino , Criança , Feminino , Adulto , Adulto Jovem , Ensaios Clínicos como Assunto , Incidência , Pré-Escolar , Pessoa de Meia-IdadeRESUMO
Introduction: eHealth seems promising in addressing challenges in the provision of care for Huntington's disease (HD) across Europe. By harnessing information and communication technologies, eHealth can partially relocate care from specialized centers to the patients' home, thereby increasing the availability and accessibility of specialty care services beyond regional borders. Previous research on eHealth (development) in HD is however limited, especially when it comes to including eHealth services specifically designed together with HD gene expansion carriers (HDGECs) and their partners to fit their needs and expectations. Methods: This article describes the qualitative human-centered design process and first evaluations of the Huntington Support App prototype: a web-app aimed to support the quality of life (QoL) of HDGECs and their partners in Europe. Prospective end-users, i.e., HDGECs, their partners, and healthcare providers (HCPs), from different countries were involved throughout the development process. Through interviews, we captured people's experiences with the disease, quality of life (QoL), and eHealth. We translated their stories into design directions that were further co-designed and subsequently evaluated with the user groups. Results: The resulting prototype centralizes clear and reliable information on the disease, HD-related news and events, as well as direct contact possibilities with HCPs via an online walk-in hour or by scheduling an appointment. The app's prototype was positively received and rated as (very) appealing, pleasant, easy to use and helpful by both HDGECs and partners. Discussion: By involving end-users in every step, we developed a healthcare app that meets relevant needs of individuals affected by HD and therefore may lead to high adoption and retention rates. As a result, the app provides low-threshold access to reliable information and specialized care for HD in Europe. A description of the Huntington Support App as well as implications for further development of the app's prototype are provided.
RESUMO
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with a fatal outcome. There is accumulating evidence of a prominent role of glia in the pathology of HD, and we investigated this by conducting single nuclear RNA sequencing (snRNAseq) of human post mortem brain in four differentially affected regions; caudate nucleus, frontal cortex, hippocampus and cerebellum. Across 127,205 nuclei from donors with HD and age/sex matched controls, we found heterogeneity of glia which is altered in HD. We describe prominent changes in the abundance of certain subtypes of astrocytes, microglia, oligodendrocyte precursor cells and oligodendrocytes between HD and control samples, and these differences are widespread across brain regions. Furthermore, we highlight possible mechanisms that characterise the glial contribution to HD pathology including depletion of myelinating oligodendrocytes, an oligodendrocyte-specific upregulation of the calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1 A (PDE1A) and an upregulation of molecular chaperones as a cross-glial signature and a potential adaptive response to the accumulation of mutant huntingtin (mHTT). Our results support the hypothesis that glia have an important role in the pathology of HD, and show that all types of glia are affected in the disease.
Assuntos
Encéfalo , Doença de Huntington , Neuroglia , Transcriptoma , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Doença de Huntington/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Masculino , Feminino , Encéfalo/patologia , Encéfalo/metabolismo , Pessoa de Meia-Idade , Idoso , Adulto , Idoso de 80 Anos ou maisRESUMO
Spastic paraplegia type 7 is an autosomal recessive neurodegenerative disorder mainly characterized by progressive bilateral lower limb spasticity and referred to as a form of hereditary spastic paraplegia. Additional disease features may also be observed as part of a more complex phenotype. Many different mutations have already been identified, but no genotype-phenotype correlations have been found so far. From a total of almost 800 patients referred for testing, we identified 60 patients with mutations in the SPG7 gene. We identified 14 previously unreported mutations and detected a high recurrence rate of several earlier reported mutations. We were able to collect detailed clinical data for 49 patients, who were ranked based on a pure versus complex phenotype, ataxia versus no ataxia and missense versus null mutations. A generally complex phenotype occurred in 69% of all patients and was associated with a younger age at onset (trend with P = 0.07). Ataxia was observed in 57% of all patients. We found that null mutations were associated with the co-occurrence of cerebellar ataxia (trend with P = 0.06). The c.1409 G > A (p.Arg470Gln) mutation, which was found homozygously in two sibs, was associated with a specific complex phenotype that included predominant visual loss due to optical nerve atrophy. Neuropathology in one of these cases showed severe degeneration of the optic system, with less severe degeneration of the ascending tracts of the spinal cord and cerebellum. Other disease features encountered in this cohort included cervical dystonia, vertical gaze palsy, ptosis and severe intellectual disability. In this large Dutch cohort, we seem to have identified the first genotype-phenotype correlation in spastic paraplegia type 7 by observing an association between the cerebellar phenotype of spastic paraplegia type 7 and SPG7 null alleles. An overlapping phenotypic presentation with its biological counterpart AFG3L2, which when mutated causes spinocerebellar ataxia type 28, is apparent and possibly suggests that abnormal levels of the SPG7 protein impact the function of the mitochondrial ATPases associated with diverse cellular activities-protease complex (formed by SPG7 and AFG3L2) in the cerebellum. In addition, a missense mutation in exon 10 resulted in predominant optical nerve atrophy, which might suggest deleterious interactions of this SPG7 variant with its substrate OPA1, the mutated gene product in optic atrophy type 1. Functional studies are required to further investigate these interactions.
Assuntos
Angiopoietinas/genética , Estudos de Associação Genética , Metaloendopeptidases/genética , Mutação/genética , Paraplegia Espástica Hereditária/genética , ATPases Associadas a Diversas Atividades Celulares , Proteína 6 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Estudos de Coortes , Genótipo , Humanos , Países Baixos , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/fisiopatologia , Fenótipo , Paraplegia Espástica Hereditária/fisiopatologiaRESUMO
Background: Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms. Currently, HD can only be managed symptomatically, including a large variety of prescribed drugs. Many HD patients experience negative medication effects (e.g. side effects or non-response). Pharmacogenetic (PGx) studies show how genetic variation affects both medication efficacy and toxicity and holds the potential to improve these outcomes of drug treatment. Primary objective: To classify the effect of the PGx profile of CYP2C19 and CYP2D6 in HD gene expansion carriers on negative medication effects of HD-related medication. Design: Multicenter, observational study with 1-year follow-up. Adult HD gene expansion carriers who use one or more HD-related medications are eligible to participate. Methods and analysis: A detailed overview of medication use, medication efficacy, and side effects is retrospectively and prospectively collected via medication diaries, questionnaires, phone calls, and pharmacy medication verification schemes. PGx analysis on whole blood-extracted DNA is performed with Agena Bioscience VeriDose® Core Panel and long-range polymerase chain reaction copy number variation analysis. Per the study protocol-defined negative medication effects in HD gene expansion carriers with a genotype predicted poor or ultrarapid metabolizer phenotype will be compared with HD gene expansion carriers with a predicted intermediate and normal metabolizer phenotype. Frequencies will be analyzed via χ2 and logistic multivariate regression analysis. In addition, we summarize in this manuscript HD-relevant PGx prescription recommendations to improve drug therapy. Ethics: The original study protocol was approved by the medical research ethics committee Leiden Den Haag Delft on 26 November 2019. Discussion: HD-MED is a low-risk study that will generate personalized PGx results that can immediately be implemented in clinical practice, thus potentially improving pharmacovigilance and patients' quality of life. Registration: This study is registered in the International Clinical Trial Registry Platform under registration number NL8251, URL https://trialsearch.who.int/Trial2.aspx?TrialID=NL8251.
RESUMO
BACKGROUND: Huntington's disease (HD) is a genetic, neurodegenerative disease. Due to the progressive nature of HD and the absence of a cure, (health-related) quality of life ((HR)QoL) is an important topic. Several studies have investigated (HR)QoL in HD, yet a clear synthesis of the existing literature is lacking to date. We performed a systematic review on self-reported (HR)QoL, and factors and intervention effects associated with (HR)QoL in premanifest and manifest HD gene expansion carriers (pHDGECs and mHDGECs, respectively). METHODS: PubMed, EMBASE, Web of Science, and PsycINFO were searched systematically from September 17th, 2021, up to August 11th, 2022. Methodological and conceptual quality of the included studies was assessed with two appraisal tools. RESULTS: 30 out of 70 eligible articles were included. mHDGECs experienced lower (HR)QoL compared to pHDGECs and controls, whereas mixed findings were reported when compared to other neurological diseases. Several factors were associated with (HR)QoL that might contribute to lower (HR)QoL in mHDGECs, including depressive symptoms, physical and psychological symptoms, lower functional capacity, lower support, and unmet needs. Multidisciplinary rehabilitation programs and a respiratory muscle training were beneficial for (HR)QoL in mHDGECs. DISCUSSION: (HR)QoL is experienced differently across the course of the disease. Although (HR)QoL is key for understanding the impact of HD and the effect of symptomatic treatment, there is a need to improve the methodological and conceptual shortcomings that were found in most studies, especially regarding the conceptual clarity when reporting on QoL and HRQoL. Suggestions for strengthening these shortcomings are provided in this review.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Qualidade de Vida/psicologia , Doenças Neurodegenerativas/complicações , AutorrelatoRESUMO
BACKGROUND: In biomedicine, machine learning (ML) has proven beneficial for the prognosis and diagnosis of different diseases, including cancer and neurodegenerative disorders. For rare diseases, however, the requirement for large datasets often prevents this approach. Huntington's disease (HD) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the huntingtin gene. The world's largest observational study for HD, Enroll-HD, describes over 21,000 participants. As such, Enroll-HD is amenable to ML methods. In this study, we pre-processed and imputed Enroll-HD with ML methods to maximise the inclusion of participants and variables. With this dataset we developed models to improve the prediction of the age at onset (AAO) and compared it to the well-established Langbehn formula. In addition, we used recurrent neural networks (RNNs) to demonstrate the utility of ML methods for longitudinal datasets, assessing driving capabilities by learning from previous participant assessments. RESULTS: Simple pre-processing imputed around 42% of missing values in Enroll-HD. Also, 167 variables were retained as a result of imputing with ML. We found that multiple ML models were able to outperform the Langbehn formula. The best ML model (light gradient boosting machine) improved the prognosis of AAO compared to the Langbehn formula by 9.2%, based on root mean squared error in the test set. In addition, our ML model provides more accurate prognosis for a wider CAG repeat range compared to the Langbehn formula. Driving capability was predicted with an accuracy of 85.2%. The resulting pre-processing workflow and code to train the ML models are available to be used for related HD predictions at: https://github.com/JasperO98/hdml/tree/main . CONCLUSIONS: Our pre-processing workflow made it possible to resolve the missing values and include most participants and variables in Enroll-HD. We show the added value of a ML approach, which improved AAO predictions and allowed for the development of an advisory model that can assist clinicians and participants in estimating future driving capability.
Assuntos
Doença de Huntington , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Prognóstico , Idade de Início , Aprendizado de MáquinaRESUMO
BACKGROUND: Paediatric Huntington disease with highly expanded mutations (HE-PHD; >80 CAG repeats) presents atypically, compared to adult-onset Huntington disease (AOHD), with neurodevelopmental delay, epilepsy, abnormal brain glucose metabolism, early striatal damage, and reduced lifespan. Since genetic GLUT-1 deficiency syndrome shows a symptom spectrum similar to HE-PHD, we investigated the potential role of the two main glucose transporters, GLUT-1 and GLUT-3, in HE-PHD. METHODS: We compared GLUT-1 and GLUT-3 protein expression in HE-PHD, juvenile-onset (JOHD), and AOHD brains (n = 2; n = 3; n = 6) and periphery (n = 3; n = 2; n = 2) versus healthy adult controls (n = 6; n = 6). We also investigated mitochondrial complexes and hexokinase-II protein expression. FINDINGS: GLUT-1 and GLUT-3 expression were significantly lower in HE-PHD frontal cortex (p = 0.009, 95% [CI 13.4, 14.7]; p = 0.017, 95% [CI 14.2, 14.5]) versus controls. In fibroblasts, GLUT-1 and GLUT-3 expression were lower compared to controls (p < 0.0001, 95% [CI 0.91, 1.09]; p = 0.046, 95% [CI 0.93, 1.07]). In the frontal cortex, this occurred without evidence of extensive neuronal degeneration. Patients with HE-PHD had deregulated mitochondrial complex expression, particularly complexes II-III, levels of which were lower in frontal cortex versus controls (p = 0.027, 95% [CI 17.1, 17.6]; p = 0.002, 95% CI [16.6, 16.9]) and patients with AOHD (p = 0.052, 95% [CI 17.0, 17.6]; p = 0.002, 95% [CI 16.6, 16.7]). Hexokinase-II expression was also lower in HE-PHD frontal cortex and striatum versus controls (p = 0.010, 95% [CI 17.8, 18.2]; p = 0.045, 95% [CI 18.6, 18.7]) and in frontal cortex versus patients with AOHD (p = 0.013, 95% [CI 17.7, 18.1]). Expression JOHD levels were consistently different to those of HE-PHD but similar to those of AOHD. INTERPRETATION: Our data suggest a dysfunctional hypometabolic state occurring specifically in paediatric Huntington disease brains. FUNDING: '5 × 1000' Personal Income Tax donation to LIRH Foundation; Italian Ministry of HealthRC2301MH04 and RF-2016-02364123 to CSS.
Assuntos
Hexoquinase , Doença de Huntington , Adulto , Criança , Humanos , Encéfalo/metabolismo , Estudos de Casos e Controles , Fibroblastos/metabolismo , Hexoquinase/metabolismo , Doença de Huntington/genéticaRESUMO
Huntington's Disease (HD) is a rare, neurodegenerative disorder characterized by chorea, cognitive decline, and behavioral changes. Despite wide clinical use since the mid-1980s, tiapride was recently withdrawn from the Dutch market without rationale. Although alternatives are available, many patients experienced dysregulation after this unwanted change. We provide insight into the impact of sudden tiapride withdrawal by reviewing medical records of HD patients who were using tiapride at the time of withdrawal. In addition, we performed a systematic search in five databases on tiapride efficacy and its safety profile in HD. Original research and expert opinions were included. In our patient group on tiapride, 50% required tiapride import from abroad. Regarding the review, 12 articles on original datasets and three expert opinions were included. The majority of studies showed an improvement in chorea while patients were on tiapride. Due to limited sample sizes, not all studies performed statistical tests on their results. Fifty percent of clinical experts prefer tiapride as initial chorea monotherapy, especially when comorbid behavioral symptoms are present. Side effects are often rare and mild. No safety concerns were reported. In conclusion, tiapride is almost irreplaceable for some patients and is an effective and safe chorea treatment in HD.