Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1683-D1693, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889052

RESUMO

The UniLectin portal (https://unilectin.unige.ch/) was designed in 2019 with the goal of centralising curated and predicted data on carbohydrate-binding proteins known as lectins. UniLectin is also intended as a support for the study of lectomes (full lectin set) of organisms or tissues. The present update describes the inclusion of several new modules and details the latest (https://unilectin.unige.ch/humanLectome/), covering our knowledge of the human lectome and comprising 215 unevenly characterised lectins, particularly in terms of structural information. Each HumanLectome entry is protein-centric and compiles evidence of carbohydrate recognition domain(s), specificity, 3D-structure, tissue-based expression and related genomic data. Other recent improvements regarding interoperability and accessibility are outlined.


Assuntos
Bases de Dados de Proteínas , Lectinas , Humanos , Carboidratos/química , Lectinas/química , Ligação Proteica , Domínios Proteicos , Anotação de Sequência Molecular
2.
Nucleic Acids Res ; 50(W1): W732-W738, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580056

RESUMO

Understanding the functions and origins of proteins requires splitting these macromolecules into fragments that could be independent in terms of folding, activity, or evolution. For that purpose, structural domains are the typical level of analysis, but shorter segments, such as subdomains and supersecondary structures, are insightful as well. Here, we propose SWORD2, a web server for exploring how an input protein structure may be decomposed into 'Protein Units' that can be hierarchically assembled to delimit structural domains. For each partitioning solution, the relevance of the identified substructures is estimated through different measures. This multilevel analysis is achieved by integrating our previous work on domain delineation, 'protein peeling' and model quality assessment. We hope that SWORD2 will be useful to biologists searching for key regions in their proteins of interest and to bioinformaticians building datasets of protein structures. The web server is freely available online: https://www.dsimb.inserm.fr/SWORD2.


Assuntos
Proteínas , Software , Proteínas/química , Computadores , Conformação Proteica , Internet
3.
Proteins ; 91(7): 904-919, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36729088

RESUMO

Protein-protein interactions (PPIs) are attractive targets as they are critical in a variety of biological processes and pathologies. As an illustration, the interleukin 3 (IL-3) and its α subunit receptor (IL-3Rα) are two proteins belonging to the cytokine or receptor ßc family and are involved in several disorders like inflammatory diseases or hematological malignancies. This PPI exhibits a low binding affinity and a complex formed by a mutant form of IL-3 (superkine) and IL-3Rα have emerged from the literature, with an increase of the affinity. Therefore, in this study, we performed molecular dynamics simulations and binding energy calculation in order to evaluate protein dynamics and to characterize the main interactions between IL-3 and IL-3Rα, considering both wild-type and mutant. First, in the case of IL-3Rα/IL-3 wild-type complex, IL-3Rα can adopt three different conformations essentially driven by NTD domain, including the open and closed conformations, previously observed in crystal structures. Additionally, our results reveal a third conformation that has a distinct interaction profile that the others. Interestingly, these conformational changes are attenuated in IL-3Rα/IL-3 mutant complex. Then, we highlighted the contribution of different residues which interact principally with IL-3 or IL-3Rα conserved region. As for the mutated residue at position 135 of IL-3, other residues such as IL-3 E138, IL-3 D40, IL-3Rα Y279, IL-3Rα K235, or IL-3Rα R277 seem important for a low or a high binding affinity. Altogether these findings yield new information that could be exploited in a drug discovery process.


Assuntos
Subunidade alfa de Receptor de Interleucina-3 , Interleucina-3 , Simulação de Dinâmica Molecular , Humanos , Interleucina-3/química , Conformação Molecular , Ligação Proteica , Subunidade alfa de Receptor de Interleucina-3/química
4.
Transfusion ; 63(1): 230-238, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349441

RESUMO

BACKGROUND: Scianna (Sc) antigens, seven high and two of low prevalence, are expressed on erythrocyte membrane-associated protein (ERMAP). We investigated SC (ERMAP) in individuals who made antibodies to high prevalence Scianna antigens, and propose a 3D model for ERMAP to precisely localize the residues associated with the known antigens. METHODS: Serological testing and DNA sequencing was performed by standard methods. A 3D structural model was built using a multi-template homology approach. Protein structures representing missense variants associated with the loss or gain of an antigen were generated. Residue accessibility and intraprotein interactions were compared with the wild-type protein. RESULTS: Two new SC alleles, one with c.349C > T (p.Arg117Cys) in a woman from South India with anti-Sc3 in her plasma, and a c.217_219delinsTGT (p.Arg73Cys) in an African-American woman with an antibody to a new high prevalence antigen, termed SCAC, were identified. Six structural templates were used to model ERMAP. 3D analysis showed that residues key for Scianna antigen expression were all exposed at the surface of the extracellular domain. The p.Arg117Cys change was predicted to abolish interactions between residues 93 and 117, with no compensating interactions. CONCLUSION: We confirm the extracellular location of Scianna residues responsible for antigen expression which predicts direct accessibility to antibodies. Loss of intraprotein interactions appear to be responsible for a Sc null and production of anti-Sc3 with p.117Cys, SC*01 N.03, and for loss of a high prevalence antigen with p.73Cys, termed SCAC for Sc Arg to Cys. Comparative modeling aids our understanding of new alleles and Scianna antigen expression.


Assuntos
Antígenos de Grupos Sanguíneos , Feminino , Humanos , Sequência de Bases , Antígenos de Grupos Sanguíneos/genética , Índia , Isoanticorpos , Prevalência , Butirofilinas/genética
5.
Transfusion ; 63(4): 798-807, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738255

RESUMO

BACKGROUND: The basal cell adhesion molecule (BCAM) carries the antigens of the Lutheran (LU, ISBT005) system. We report a novel Lutheran antigen and propose an updated, full-length 3D model of BCAM. STUDY DESIGN AND METHODS: Red blood cell testing, antibody identification, and BCAM genomic DNA sequencing were done by standard methods. Multi-template homology modeling of BCAM used structural templates selected for coverage, highest sequence identity, and protein domain family. All variants causing the loss or gain of a Lutheran antigen were analyzed for residue accessibility and intraprotein interactions. RESULTS: An antibody to a high-prevalence antigen in the plasma of a pregnant woman was determined to be directed at a novel Lutheran antigen. Sequencing of BCAM found three homozygous changes: c.212G > A (p.Arg71His) and two silent, c.711C > T and c.714C > T. The model was built from the first two immunoglobulin crystallized domains of BCAM (D1, D2), three other templates (for D3, D4 and D5 with a higher sequence identity with the target than those used for the model proposed by Burton and Brady in 2008, and for the transmembrane region) and RaptorX (for the intracellular domain). All residues associated with a Lutheran antigen were found to be exposed in wild-type or variant proteins, except p.447 associated with loss of Lu13 expression. CONCLUSION: The c.212G > A change results in the loss of LUGA (LU24) antigen. Whole genome sequencing continues to reveal polymorphisms with uncertain immunogenicity. This model and demonstration that nearly all residues associated with the expression of a Lutheran antigen are exposed will help evaluate the significance of new polymorphisms.


Assuntos
Moléculas de Adesão Celular , Protestantismo , Humanos , Moléculas de Adesão Celular/genética , Prevalência , Eritrócitos/metabolismo , Sistema do Grupo Sanguíneo Lutheran/genética
6.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686086

RESUMO

Plasmodium vivax malaria affects 14 million people each year. Its invasion requires interactions between the parasitic Duffy-binding protein (PvDBP) and the N-terminal extracellular domain (ECD1) of the host's Duffy antigen/receptor for chemokines (DARC). ECD1 is highly flexible and intrinsically disordered, therefore it can adopt different conformations. We computationally modeled the challenging ECD1 local structure. With T-REMD simulations, we sampled its dynamic behavior and collected its most representative conformations. Our results suggest that most of the DARC ECD1 domain remains in a disordered state during the simulated time. Globular local conformations are found in the analyzed local free-energy minima. These globular conformations share an α-helix spanning residues Ser18 to Ser29 and in many cases they comprise an antiparallel ß-sheet, whose ß-strands are formed around residues Leu10 and Ala49. The formation of a parallel ß-sheet is almost negligible. So far, progress in understanding the mechanisms forming the basis of the P. vivax malaria infection of reticulocytes has been hampered by experimental difficulties, along with a lack of DARC structural information. Our collection of the most probable ECD1 structural conformations will help to advance modeling of the DARC structure and to explore DARC-ECD1 interactions with a range of physiological and pathological ligands.


Assuntos
Malária Vivax , Simulação de Dinâmica Molecular , Humanos , Quimiocinas , Receptores de Antígenos , Temperatura
7.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834033

RESUMO

Camelids have the peculiarity of having classical antibodies composed of heavy and light chains as well as single-chain antibodies. They have lost their light chains and one heavy-chain domain. This evolutionary feature means that their terminal heavy-chain domain, VH, called VHH here, has no partner and forms an independent domain. The VHH is small and easy to express alone; it retains thermodynamic and interaction properties. Consequently, VHHs have garnered significant interest from both biotechnological and pharmaceutical perspectives. However, due to their origin in camelids, they cannot be used directly on humans. A humanization step is needed before a possible use. However, changes, even in the constant parts of the antibodies, can lead to a loss of quality. A dedicated tool, Llamanade, has recently been made available to the scientific community. In a previous paper, we already showed the different types of VHH dynamics. Here, we have selected a representative VHH and tested two humanization hypotheses to accurately assess the potential impact of these changes. This example shows that despite the non-negligible change (1/10th of residues) brought about by humanization, the effect is not drastic, and the humanized VHH retains conformational properties quite similar to those of the camelid VHH.


Assuntos
Camelídeos Americanos , Cadeias Pesadas de Imunoglobulinas , Humanos , Animais , Cadeias Pesadas de Imunoglobulinas/química , Anticorpos , Biotecnologia
8.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901942

RESUMO

Conformational flexibility plays an essential role in antibodies' functional and structural stability. They facilitate and determine the strength of antigen-antibody interactions. Camelidae express an interesting subtype of single-chain antibody, named Heavy Chain only Antibody. They have only one N-terminal Variable domain (VHH) per chain, composed of Frameworks (FRs) and Complementarity Determining regions (CDRs) like their VH and VL counterparts in IgG. Even when expressed independently, VHH domains display excellent solubility and (thermo)stability, which helps them to retain their impressive interaction capabilities. Sequence and structural features of VHH domains contributing to these abilities have already been studied compared to classical antibodies. To have the broadest view and understand the changes in dynamics of these macromolecules, large-scale molecular dynamics simulations for a large number of non-redundant VHH structures have been performed for the first time. This analysis reveals the most prevalent movements in these domains. It reveals the four main classes of VHHs dynamics. Diverse local changes were observed in CDRs with various intensities. Similarly, different types of constraints were observed in CDRs, while FRs close to CDRs were sometimes primarily impacted. This study sheds light on the changes in flexibility in different regions of VHH that may impact their in silico design.


Assuntos
Camelidae , Região Variável de Imunoglobulina , Animais , Região Variável de Imunoglobulina/química , Regiões Determinantes de Complementaridade/química , Cadeias Pesadas de Imunoglobulinas/química , Simulação de Dinâmica Molecular
9.
Amino Acids ; 54(4): 575-590, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35020020

RESUMO

Protein 3D structures, determined by their amino acid sequences, are the support of major crucial biological functions. Post-translational modifications (PTMs) play an essential role in regulating these functions by altering the physicochemical properties of proteins. By virtue of their importance, several PTM databases have been developed and released in decades, but very few of these databases incorporate real 3D structural data. Since PTMs influence the function of the protein and their aberrant states are frequently implicated in human diseases, providing structural insights to understand the influence and dynamics of PTMs is crucial for unraveling the underlying processes. This review is dedicated to the current status of databases providing 3D structural data on PTM sites in proteins. Some of these databases are general, covering multiple types of PTMs in different organisms, while others are specific to one particular type of PTM, class of proteins or organism. The importance of these databases is illustrated with two major types of in silico applications: predicting PTM sites in proteins using machine learning approaches and investigating protein structure-function relationships involving PTMs. Finally, these databases suffer from multiple problems and care must be taken when analyzing the PTMs data.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Bases de Dados de Proteínas , Humanos , Aprendizado de Máquina , Proteínas/química
10.
Platelets ; 33(1): 157-167, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33444113

RESUMO

Essential thrombocythemia (ET) is a blood cancer defined by a strong increase of platelet numbers. A quarter of patients suffering from ET show mutations in the last exon of calreticulin (CALR) gene. Two variants named type 1 and type 2 represent 85% of these patients. However, a large number of other variants have been determined. In this study, we have compiled variants taken from COSMIC database and literature leading to 155 different variants. This large number of variants allowed redefining 5 new classes extending the classification of type 1-like and type 2-like to a finer description. These analyses showed that last class, named E, corresponding to more than 10% of CALR variants seemed not attached to ET. Structural properties analyzed showed that CALR variants associated to ET have common features. All the compiled and refined information had been included into a freely dedicated database CALR-ETdb (https://www.dsimb.inserm.fr/CALR-ET).


Assuntos
Calreticulina/uso terapêutico , Trombocitemia Essencial/tratamento farmacológico , Calreticulina/farmacologia , Bases de Dados Factuais , Humanos
11.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293166

RESUMO

The ß-turn is the third defined secondary structure after the α-helix and the ß-sheet. The ß-turns were described more than 50 years ago and account for more than 20% of protein residues. Nonetheless, they are often overlooked or even misunderstood. This poor knowledge of these local protein conformations is due to various factors, causes that I discuss here. For example, confusion still exists about the assignment of these local protein structures, their overlaps with other structures, the potential absence of a stabilizing hydrogen bond, the numerous types of ß-turns and the software's difficulty in assigning or visualizing them. I also propose some ideas to potentially/partially remedy this and present why ß-turns can still be helpful, even in the AlphaFold 2 era.


Assuntos
Proteínas , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Conformação Proteica , Ligação de Hidrogênio , Proteínas/química
12.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055046

RESUMO

Integrin αIIbß3, a glycoprotein complex expressed at the platelet surface, is involved in platelet aggregation and contributes to primary haemostasis. Several integrin αIIbß3 polymorphisms prevent the aggregation that causes haemorrhagic syndromes, such as Glanzmann thrombasthenia (GT). Access to 3D structure allows understanding the structural effects of polymorphisms related to GT. In a previous analysis using Molecular Dynamics (MD) simulations of αIIbCalf-1 domain structure, it was observed that GT associated with single amino acid variation affects distant loops, but not the mutated position. In this study, experiments are extended to Calf-1, Thigh, and Calf-2 domains. Two loops in Calf-2 are unstructured and therefore are modelled expertly using biophysical restraints. Surprisingly, MD revealed the presence of rigid zones in these loops. Detailed analysis with structural alphabet, the Proteins Blocks (PBs), allowed observing local changes in highly flexible regions. The variant P741R located at C-terminal of Calf-1 revealed that the Calf-2 presence did not affect the results obtained with isolated Calf-1 domain. Simulations for Calf-1 + Calf-2, and Thigh + Calf-1 variant systems are designed to comprehend the impact of five single amino acid variations in these domains. Distant conformational changes are observed, thus highlighting the potential role of allostery in the structural basis of GT.


Assuntos
Mutação de Sentido Incorreto , Glicoproteína IIb da Membrana de Plaquetas/química , Glicoproteína IIb da Membrana de Plaquetas/genética , Domínios e Motivos de Interação entre Proteínas/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Modelos Moleculares , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409081

RESUMO

VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.


Assuntos
Camelídeos Americanos , Cadeias Pesadas de Imunoglobulinas , Sequência de Aminoácidos , Animais , Anticorpos , Cadeias Pesadas de Imunoglobulinas/química , Modelos Estruturais
14.
Transfusion ; 61(4): 1286-1301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586199

RESUMO

BACKGROUND: Many RhD variants associated with anti-D formation (partial D) in carriers exposed to the conventional D antigen carry mutations affecting extracellular loop residues. Surprisingly, some carry mutations affecting transmembrane or intracellular domains, positions not thought likely to have a major impact on D epitopes. STUDY DESIGN AND METHODS: A wild-type Rh trimer (RhD1 RhAG2 ) was modeled by comparative modeling with the human RhCG structure. Taking trimer conformation, residue accessibility, and position relative to the lipid bilayer into account, we redefine the domains of the RhD protein. We generated models for RhD variants carrying one or two amino acid substitutions associated with anti-D formation in published articles (25 variants) or abstracts (12 variants) and for RHD*weak D type 38. We determined the extracellular substitutions and compared the interactions of the variants with those of the standard RhD. RESULTS: The findings of the three-dimensional (3D) analysis were correlated with anti-D formation for 76% of RhD variants: 15 substitutions associated with anti-D formation concerned extracellular residues, and structural differences in intraprotein interactions relative to standard RhD were observed in the others. We discuss the mechanisms by which D epitopes may be modified in variants in which the extracellular residues are identical to those of standard RhD and provide arguments for the benignity of p.T379M (RHD*DAU0) and p.G278D (RHD*weak D type 38) in transfusion medicine. CONCLUSION: The study of RhD intraprotein interactions and the precise redefinition of residue accessibility provide insight into the mechanisms through which RhD point mutations may lead to anti-D formation in carriers.


Assuntos
Proteínas Sanguíneas/genética , Epitopos/imunologia , Glicoproteínas de Membrana/genética , Imunoglobulina rho(D)/genética , Tropocolágeno/metabolismo , Alelos , Substituição de Aminoácidos/genética , Feminino , Heterozigoto , Humanos , Mutação/genética , Gravidez , Estudos Retrospectivos , Imunoglobulina rho(D)/imunologia , Homologia Estrutural de Proteína
15.
Amino Acids ; 53(8): 1211-1227, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34196789

RESUMO

Interleukin-3 (IL-3) is a cytokine belonging to the family of common ß (ßc) and is involved in various biological systems. Its activity is mediated by the interaction with its receptor (IL-3R), a heterodimer composed of two distinct subunits: IL-3Rα and ßc. IL-3 and its receptor, especially IL-3Rα, play a crucial role in pathologies like inflammatory diseases and therefore are interesting therapeutic targets. Here, we have performed an analysis of these proteins and their interaction based on structural and evolutionary information. We highlighted that IL-3 and IL-3Rα structural architectures are conserved across evolution and shared with other proteins belonging to the same ßc family interleukin-5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The IL-3Rα/IL-3 interaction is mediated by a large interface in which most residues are surprisingly not conserved during evolution and across family members. In spite of this high variability, we suggested small regions constituted by few residues conserved during the evolution in both proteins that could be important for the binding affinity.


Assuntos
Evolução Molecular , Interleucina-3/química , Receptores de Interleucina-3/química , Sequência de Aminoácidos , Animais , Humanos , Interleucina-3/genética , Conformação Proteica , Receptores de Interleucina-3/genética , Homologia de Sequência de Aminoácidos
16.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575931

RESUMO

In the particular case of the Camelidae family, immunoglobulin proteins have evolved into a unique and more simplified architecture with only heavy chains. The variable domains of these chains, named VHHs, have a number of Complementary Determining Regions (CDRs) reduced by half, and can function as single domains making them good candidates for molecular tools. 3D structure prediction of these domains is a beneficial and advantageous step to advance their developability as molecular tools. Nonetheless, the conformations of CDRs loops in these domains remain difficult to predict due to their higher conformational diversity. In addition to CDRs loop diversity, our earlier study has established that Framework Regions (FRs) are also not entirely conformationally conserved which establishes a need for more rigorous analyses of these regions that could assist in template selection. In the current study, VHHs models using different template selection strategies for comparative modeling using Modeller have been extensively assessed. This study analyses the conformational changes in both CDRs and FRs using an original strategy of conformational discretization based on a structural alphabet. Conformational sampling in selected cases is precisely reported. Some interesting outcomes of the structural analyses of models also draw attention towards the distinct difficulty in 3D structure prediction of VHH domains.


Assuntos
Cadeias Pesadas de Imunoglobulinas/química , Região Variável de Imunoglobulina/química , Modelos Moleculares , Conformação Proteica , Sequência de Aminoácidos , Regiões Determinantes de Complementaridade/química , Humanos , Ligação Proteica , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445537

RESUMO

Protein Blocks (PBs) are a widely used structural alphabet describing local protein backbone conformation in terms of 16 possible conformational states, adopted by five consecutive amino acids. The representation of complex protein 3D structures as 1D PB sequences was previously successfully applied to protein structure alignment and protein structure prediction. In the current study, we present a new model, PYTHIA (predicting any conformation at high accuracy), for the prediction of the protein local conformations in terms of PBs directly from the amino acid sequence. PYTHIA is based on a deep residual inception-inside-inception neural network with convolutional block attention modules, predicting 1 of 16 PB classes from evolutionary information combined to physicochemical properties of individual amino acids. PYTHIA clearly outperforms the LOCUSTRA reference method for all PB classes and demonstrates great performance for PB prediction on particularly challenging proteins from the CASP14 free modelling category.


Assuntos
Algoritmos , Aprendizado Profundo , Redes Neurais de Computação , Conformação Proteica , Proteínas/química , Análise de Sequência de Proteína/métodos , Software , Bases de Dados de Proteínas , Humanos , Modelos Moleculares
18.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361104

RESUMO

Most non-communicable diseases are associated with dysfunction of proteins or protein complexes. The relationship between sequence and structure has been analyzed for a long time, and the analysis of the sequences organization in domains and motifs remains an actual research area. Here, we propose a mathematical method for revealing the hierarchical organization of protein sequences. The method is based on the pentapeptide as a unit of protein sequences. Employing the frequency of occurrence of pentapeptides in sequences of natural proteins and a special mathematical approach, this method revealed a hierarchical structure in the protein sequence. The method was applied to 24,647 non-homologous protein sequences with sizes ranging from 50 to 400 residues from the NRDB90 database. Statistical analysis of the branching points of the graphs revealed 11 characteristic values of y (the width of the inscribed function), showing the relationship of these multiple fragments of the sequences. Several examples illustrate how fragments of the protein spatial structure correspond to the elements of the hierarchical structure of the protein sequence. This methodology provides a promising basis for a mathematically-based classification of the elements of the spatial organization of proteins. Elements of the hierarchical structure of different levels of the hierarchy can be used to solve biotechnological and medical problems.


Assuntos
Algoritmos , Bases de Dados de Proteínas , Conformação Proteica , Proteínas/química , Humanos , Modelos Moleculares
19.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805426

RESUMO

Myeloproliferative neoplasms (MPNs) are a group of disorders characterized by clonal expansion of abnormal hematopoietic stem cells leading to hyperproliferation of one or more myeloid lineages. The main complications in MPNs are high risk of thrombosis and progression to myelofibrosis and leukemia. MPN patients with high risk scores are treated by hydroxyurea (HU), interferon-α, or ruxolitinib, a tyrosine kinase inhibitor. Polycythemia vera (PV) is an MPN characterized by overproduction of red blood cells (RBCs). ABCG2 is a member of the ATP-binding cassette superfamily transporters known to play a crucial role in multidrug resistance development. Proteome analysis showed higher ABCG2 levels in PV RBCs compared to RBCs from healthy controls and an additional increase of these levels in PV patients treated with HU, suggesting that ABCG2 might play a role in multidrug resistance in MPNs. In this work, we explored the role of ABCG2 in the transport of ruxolitinib and HU using human cell lines, RBCs, and in vitro differentiated erythroid progenitors. Using stopped-flow analysis, we showed that HU is not a substrate for ABCG2. Using transfected K562 cells expressing three different levels of recombinant ABCG2, MPN RBCs, and cultured erythroblasts, we showed that ABCG2 potentiates ruxolitinib-induced cytotoxicity that was blocked by the ABCG2-specific inhibitor KO143 suggesting ruxolitinib intracellular import by ABCG2. In silico modeling analysis identified possible ruxolitinib-binding site locations within the cavities of ABCG2. Our study opens new perspectives in ruxolitinib efficacy research targeting cell types depending on ABCG2 expression and polymorphisms among patients.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Eritrócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Policitemia Vera/tratamento farmacológico , Pirazóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Simulação por Computador , Dicetopiperazinas/farmacologia , Eritrócitos/efeitos dos fármacos , Células Eritroides/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Hidroxiureia/metabolismo , Hidroxiureia/farmacologia , Interferon-alfa/farmacologia , Células K562 , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Nitrilas , Fosfatidilserinas/metabolismo , Policitemia Vera/sangue , Policitemia Vera/patologia , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacocinética , Pirimidinas
20.
J Struct Biol ; 210(1): 107464, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978465

RESUMO

Sequence - structure - function paradigm has been revolutionized by the discovery of disordered regions and disordered proteins more than two decades ago. While the definition of rigidity is simple with X-ray structures, the notion of flexibility is linked to high experimental B-factors. The definition of disordered regions is more complex as in these same X-ray structures; it is associated to the position of missing residues. Thus a continuum so seems to exist between rigidity, flexibility and disorder. However, it had not been precisely described. In this study, we used an ensemble of disordered proteins (or regions) and, we applied a structural alphabet to analyse their local conformation. This structural alphabet, namely Protein Blocks, had been efficiently used to highlight rigid local domains within flexible regions and so discriminates deformability and mobility concepts. Using an entropy index derived from this structural alphabet, we underlined its interest to measure these local dynamics, and to quantify, for the first time, continuum states from rigidity to flexibility and finally disorder. We also highlight non-disordered regions in the ensemble of disordered proteins in our study.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Entropia , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa