Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Langmuir ; 40(14): 7353-7363, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38536768

RESUMO

Nanomaterials of zinc oxide (ZnO) exhibit antibacterial activities under ambient illumination that result in cell membrane permeability and disorganization, representing an important opportunity for health-related applications. However, the development of antibiofouling surfaces incorporating ZnO nanomaterials has remained limited. In this work, we fabricate superhydrophobic surfaces based on ZnO nanopillars. Water droplets on these superhydrophobic surfaces exhibit small contact angle hysteresis (within 2-3°) and a minimal tilting angle of 1°. Further, falling droplets bounce off when impacting the superhydrophobic ZnO surfaces with a range of Weber numbers (8-46), demonstrating that the surface facilitates a robust Cassie-Baxter wetting state. In addition, the antibiofouling efficacy of the surfaces has been established against model pathogenic Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). No viable colonies of E. coli were recoverable on the superhydrophobic surfaces of ZnO nanopillars incubated with cultured bacterial solutions for 18 h. Further, our tests demonstrate a substantial reduction in the quantity of S. aureus that attached to the superhydrophobic ZnO nanopillars. Thus, the superhydrophobic ZnO surfaces offer a viable design of antibiofouling materials that do not require additional UV illumination or antimicrobial agents.


Assuntos
Óxido de Zinco , Molhabilidade , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Propriedades de Superfície , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química
2.
Heliyon ; 10(15): e35109, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170441

RESUMO

Oligoarginine cell-penetrating peptides (CPPs) are short peptides that can enhance drug delivery into cells and are of particular interest in ocular topical formulations for age-related macular degeneration (AMD) treatments. The length and structural characteristics of these peptides are considered crucial for drug delivery. This study investigates how oligoarginine length (Rn) affects their penetration mechanism, drug delivery capabilities, and antimicrobial properties, providing insights into their potential roles in AMD treatment delivery. In this study, oligoarginine peptides showed limited pore-forming abilities in a carboxyfluorescein-containing liposomal model, with R9 being the only oligoarginine length recording a significant pore-formation level. Their antibacterial efficacy depended on both the CPP length and bacterial class, with longer peptides exhibiting stronger antibacterial effects. Importantly, oligoarginine was found nontoxic to relevant mammalian cells for ocular delivery. The membrane translocation abilities of oligoarginine were consistent regardless of cargo presence. Additionally, cargo delivery by oligoarginine across in vitro cellular models for ocular delivery was dependent on peptide length and cell type, with longer chains being more effective at cargo uptake in a corneal epithelium cell line, and with shorter chains proving more effective for cargo delivery in a retinal epithelium cell line. This proposes that the chain length of oligoarginine could be used as a strategic tool in the formulation process to selectively target distinct regions of the eye. Overall, this study expands our understanding of how oligoarginine CPPs can be applied as penetration enhancers to improve the delivery of therapeutics in an ocular topical formulation within the clinical context of AMD.

3.
Sci Rep ; 12(1): 2803, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264599

RESUMO

The COVID-19 pandemic has demonstrated the real need for mechanisms to control the spread of airborne respiratory pathogens. Thus, preventing the spread of disease from pathogens has come to the forefront of the public consciousness. This has brought an increasing demand for novel technologies to prioritise clean air. In this study we report on the efficacy of novel biocide treated filters and their antimicrobial activity against bacteria, fungi and viruses. The antimicrobial filters reported here are shown to kill pathogens, such as Candida albicans, Escherichia coli and MRSA in under 15 min and to destroy SARS-CoV-2 viral particles in under 30 s following contact with the filter. Through air flow rate testing, light microscopy and SEM, the filters are shown to maintain their structure and filtration function. Further to this, the filters are shown to be extremely durable and to maintain antimicrobial activity throughout the operational lifetime of the product. Lastly, the filters have been tested in field trials onboard the UK rail network, showing excellent efficacy in reducing the burden of microbial species colonising the air conditioning system.


Assuntos
Filtros de Ar/microbiologia , Anti-Infecciosos/química , Antivirais/química , Filtros de Ar/virologia , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/virologia , Candida albicans/efeitos dos fármacos , Clorexidina/análogos & derivados , Clorexidina/química , Clorexidina/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Fatores de Tempo
4.
Glob Chall ; 6(5): 2100138, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35602408

RESUMO

There is an increasing focus in healthcare environments on combatting antimicrobial resistant infections. While bacterial infections are well reported, infections caused by fungi receive less attention, yet have a broad impact on society and can be deadly. Fungi are eukaryotes with considerable shared biology with humans, therefore limited technologies exist to combat fungal infections and hospital infrastructure is rarely designed for reducing microbial load. In this study, a novel antimicrobial surface (AMS) that is modified with the broad-spectrum biocide chlorhexidine is reported. The surfaces are shown to kill the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans very rapidly (<15 min) and are significantly more effective than current technologies available on the commercial market, such as silver and copper.

5.
J Mater Sci Mater Med ; 22(4): 1045-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21431355

RESUMO

Creating tissue-mimetic biomaterials able to deliver bioactive compounds after receipt of a remote and non-invasive trigger has so far proved to be challenging. The possible applications of such "smart" biomaterials are vast, ranging from subcutaneous drug delivery to tissue engineering. Self-assembled phospholipid vesicles (liposomes) have the ability to deliver both hydrophilic and hydrophobic drugs, and controlling interactions between functionalized vesicles and cells within biomaterials is an important step for targeted drug delivery to cells. We report an investigation of the interactions between thermally-sensitive and biotin-coated dipalmitoyl phosphatidylcholine vesicles and 3T3 fibroblast cells. The stability of these vesicles under physiological conditions was assessed and their interaction with the cell membranes of fibroblasts in media and alginate/fibronectin mixtures was studied. Stable vesicle-cell aggregates were formed in fluid matrices, and could be a model system for improving the delivery of remotely released drugs within vesicle-containing biomaterials.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Células 3T3 , Animais , Biotina/química , Biotinilação , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/química , Fluoresceína-5-Isotiocianato/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Camundongos , Rodaminas/química
6.
Curr Eye Res ; 46(5): 751-757, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33896277

RESUMO

AIM: The development of a polyarginine cell-penetrating peptide (CPP) could enable the treatment of age-related macular degeneration, with drugs like bevacizumab, to be administered using eye drops instead of intravitreal injections. Topical formulations have a vast potential impact on healthcare by increasing patient compliance while reducing the financial burden. However, as the ocular preparations may contain several doses, it is essential to understand the stability of the bevacizumab+CPP conjugate produced. MATERIALS AND METHODS: In this work, we examine the stability of a bevacizumab solution with and without cell-penetrating peptide using dynamic light scattering and circular dichroism to assess the physical stability. We use HPLC to assess the chemical stability and ELISA to assess its biological activity. We also examine the potential of the CPP to be used as an antimicrobial agent in place of preservatives in the eye drop. RESULTS: The structural stability of bevacizumab with and without the CPP was found not to be affected by temperature: samples stored at either 20°C or 4°C were identical in behavior. However, physical instability was observed after five weeks, leading to aggregation and precipitation. Further investigation revealed that the addition of the polypeptide led to increased aggregation, as revealed through dynamic light scattering and concentration analysis of the peptide through HPLC. Complexing the bevacizumab with CPP had no effect on biological stability or degradation. CONCLUSIONS: Our findings suggest that the shelf life of CPP+bevacizumab complexes is at least 38 days from its initial formulation. Currently, the mechanism for aggregation is not fully understood but does not appear to occur through chemical degradation.


Assuntos
Inibidores da Angiogênese/química , Bevacizumab/química , Peptídeos Penetradores de Células/química , Degeneração Macular/tratamento farmacológico , Peptídeos/química , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Ensaio de Imunoadsorção Enzimática , Luz , Soluções Oftálmicas , Preparações Farmacêuticas , Espalhamento de Radiação
7.
Chem Commun (Camb) ; 56(26): 3729-3732, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32129331

RESUMO

The metal hydration state within a designed coiled coil can be progressively tuned across the full integer range (3 → 0 aqua ligands), by careful choice of a second sphere terminal residue, including the lesser used Trp. Potential implications include a four-fold change in MRI relaxivity when applied to lanthanide coiled coils.


Assuntos
Complexos de Coordenação/química , Gadolínio/química , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Ligação Proteica
8.
Mater Sci Eng C Mater Biol Appl ; 102: 299-304, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147002

RESUMO

Despite increased sterilisation and education campaigns, hospital acquired infections have not been eradicated. Bacterial colonisation of frequent touch surfaces is key in the transmission of infection. Most current technologies cannot provide a material which can rapidly kill bacteria. Here we report a novel surface technology, which uses synthetic mimetics of human defensin proteins on a surface. The surface shows excellent antibacterial efficacy against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus, Pseudomonas aeruginosa and Escherichia coli. Both microbiology laboratory tests and trials in hospital settings of this new antimicrobial material (AMS) showed >99% efficacy over a year in situ. It maintains its efficacy through accelerated ageing tests and has shown to kill bacteria far more rapidly (45 min) than the commercially available technologies (24 h).


Assuntos
Anti-Infecciosos/farmacologia , Teste de Materiais , Peptídeos/farmacologia , Aço/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Testes de Sensibilidade Microbiana
9.
Mater Sci Eng C Mater Biol Appl ; 78: 203-209, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575976

RESUMO

Microbial keratitis is a severe ocular condition and one of the most prevalent causes of corneal scarring and associated blindness worldwide. Risk factors include contact lens use, ocular trauma, ocular surface disease and immunosuppression. Initial clinical management mandates intensive (hourly or more frequent) topical administration of broad spectrum antimicrobial therapy for at least 48h, which may require hospital admission, followed by tailored therapy based on microbiological investigation and the institution of strategies to reduce inflammation and promote healing. In this work we report an ocular wound dressing which can encapsulate and give sustained release of different antibiotics. The use of this dressing would allow patients to have eye drops on a 4 hourly basis, thereby facilitating treatment compliance and reducing hospital admissions.


Assuntos
Anti-Infecciosos/química , Bandagens , Hidrogéis , Ceratite , Soluções Oftálmicas
10.
Invest Ophthalmol Vis Sci ; 58(5): 2578-2590, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28494491

RESUMO

Purpose: To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. Methods: CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. Results: CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. Conclusions: CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.


Assuntos
Bevacizumab/administração & dosagem , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos , Degeneração Macular/tratamento farmacológico , Ranibizumab/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Administração Tópica , Adulto , Inibidores da Angiogênese/administração & dosagem , Animais , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Angiofluoresceinografia , Humanos , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Soluções Oftálmicas , Segmento Posterior do Olho , Ratos , Ratos Sprague-Dawley , Suínos
11.
J R Soc Interface ; 14(126)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077764

RESUMO

The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Teste de Materiais , Osteoblastos/metabolismo , Animais , Linhagem Celular , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Camundongos , Osteoblastos/citologia , Eletricidade Estática
13.
Invest Ophthalmol Vis Sci ; 57(2): 429-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26848882

RESUMO

PURPOSE: To investigate, using in vivo and in vitro models, retinal ganglion cell (RGC) neuroprotective and axon regenerative effects and underlying mechanisms of siRTP801, a translatable small-interfering RNA (siRNA) targeting the mTOR negative regulator RTP801. METHODS: Adult rats underwent optic nerve (ON) crush (ONC) followed by intravitreal siRTP801 or control siRNA (siEGFP) every 8 days, with Brn3a+ RGC survival, GFAP+ reactive gliosis, and GAP43+ regenerating axons analyzed immunohistochemically 24 days after injury. Retinal cultures, prepared from uninjured animals or 5 days after ONC to activate retinal glia, were treated with siRTP801/controls in the presence/absence of rapamycin and subsequently assessed for RGC survival and neurite outgrowth, RTP801 expression, glial responses, and mTOR activity. Conditioned medium was analyzed for neurotrophin titers by ELISA. RESULTS: Intravitreal siRTP801 enabled 82% RGC survival compared to 45% with siEGFP 24 days after ONC, correlated with greater GAP43+ axon regeneration at 400 to 1200 µm beyond the ONC site, and potentiated the reactive GFAP+ Müller glial response. In culture, siRTP801 had a direct RGC neuroprotective effect, but required GFAP+ activated glia to stimulate neurite elongation. The siRTP801-induced neuroprotection was significantly reduced, but not abolished, by rapamycin. The siRTP801 potentiated the production and release of neurotrophins NGF, NT-3, and BDNF, and prevented downregulation of RGC mTOR activity. CONCLUSIONS: The RTP801 knockdown promoted RGC survival and axon elongation after ONC, without increasing de novo regenerative sprouting. The neuroprotection was predominantly direct, with mTORC1-dependent and -independent components. Enhanced neurite/axon elongation by siRTP801 required the presence of activated retinal glia and was mediated by potentiated secretion of neurotrophic factors.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/genética , Células Ganglionares da Retina/citologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Imunossupressores/farmacologia , Injeções Intravítreas , Masculino , Compressão Nervosa , Fatores de Crescimento Neural/metabolismo , Traumatismos do Nervo Óptico/etiologia , Traumatismos do Nervo Óptico/prevenção & controle , Ratos , Ratos Wistar , Células Ganglionares da Retina/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição , Transfecção
14.
Mater Sci Eng C Mater Biol Appl ; 54: 84-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046271

RESUMO

Current processes for coating titanium implants with ceramics involve very high energy techniques with associated high cost and disadvantages such as heterogeneity of the coatings, phase transformations and inability to coat complex structures. In order to address the above problems, we propose a biomimetic hydroxyapatite coating process with the use of peptides that can bind both on titanium surfaces and hydroxyapatite. The peptides enabled homogeneous coating of a titanium surface with hydroxyapatite. The hydroxyapatite-peptide sandwich coating showed no adverse effects on cell number or collagen deposition. This makes the sandwich coated titanium a good candidate for titanium implants used in orthopaedics and dentistry.


Assuntos
Aptâmeros de Peptídeos/química , Materiais Revestidos Biocompatíveis/química , Ortopedia/métodos , Próteses e Implantes , Biomimética , Linhagem Celular Tumoral , Cerâmica/química , Colágeno/química , Durapatita/química , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Propriedades de Superfície , Titânio/química
15.
Invest Ophthalmol Vis Sci ; 56(6): 3743-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26066743

RESUMO

PURPOSE: To investigate whether Decorin, a matrikine that regulates extracellular matrix (ECM) deposition, can reverse established trabecular meshwork (TM) fibrosis, lower IOP, and reduce progressive retinal ganglion cell (RGC) death in a novel rodent model of TM fibrosis. METHODS: Adult rats had intracameral (IC) injections of human recombinant (hr) TGF-ß over 30 days (30 d; to induce TM fibrosis, raise IOP, and initiate RGC death by 17 d) or PBS (controls) and visually evoked potentials (VEP) were measured at 30 d to evaluate resultant visual pathway dysfunction. In some animals TGF-ß injections were stopped at 17 d when TM fibrosis and IOP were consistently raised and either hrDecorin or PBS IC injections were administered between 21 d and 30 d. Intraocular pressure was measured biweekly and eyes were processed for immunohistochemical analysis of ECM deposition to assess TM fibrosis and levels of matrix metalloproteinases (MMP) and tissue inhibitors of matrix metalloproteinases (TIMP) to assess fibrolysis. The effect of hrDecorin treatment on RGC survival was also assessed. RESULTS: Transforming growth factor-ß injections caused sustained increases in ECM deposition in the TM and raised IOP by 17 d, responses that were associated with 42% RGC loss and a significant decrease in VEP amplitude measured at 30 d. Decorin treatment from 17 d reduced TGF-ß-induced TM fibrosis, increased levels of MMP2 and MMP9 and lowered TIMP2 levels, and lowered IOP, preventing progressive RGC loss. CONCLUSIONS: Human recombinant Decorin reversed established TM fibrosis and lowered IOP, thereby rescuing RGC from progressive death. These data provide evidence for the candidacy of hrDecorin as a treatment for open-angle glaucoma.


Assuntos
Decorina/farmacologia , Decorina/uso terapêutico , Pressão Intraocular/efeitos dos fármacos , Células Ganglionares da Retina/efeitos dos fármacos , Malha Trabecular/patologia , Animais , Morte Celular/efeitos dos fármacos , Fibrose/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa