RESUMO
Stevioside is a natural non-caloric sweetener extracted from Stevia rebaudiana (Bertoni) leaves. It has been widely used in many countries, including Japan, Korea, China, Brazil and Paraguay, either as a substitute for sucrose in beverages and foods or as a household sweetener. The aim of this work was to study its genotoxic potentiality in eukaryotic cells. Wistar rats were treated with stevioside solution (4mg/mL) through oral administration (ad libitum) and the DNA-induced damage was evaluated using the single cell gel electrophoresis (comet assay). The results showed that treatment with stevioside generates lesions in peripheral blood, liver, brain and spleen cells in different levels, the largest effect being in liver. Therefore, these undesired effects must be better understood, once the data present here point to possible stevioside mutagenic properties.
Assuntos
Ensaio Cometa/métodos , Diterpenos do Tipo Caurano/toxicidade , Glucosídeos/toxicidade , Edulcorantes/toxicidade , Animais , Dano ao DNA , Ratos , Ratos WistarRESUMO
The stannous ion, mainly the stannous chloride (SnCl(2)) salt form, is widely used as a reducing agent to label radiotracers with technetium-99m ((99m)Tc). These radiotracers can be employed as radiopharmaceuticals in nuclear medicine procedures. In this case, there is no doubt about absorption of this complex, because it is intravenously administered in humans, although biological effects of these agents have not been fully understood. In this work we used a bacterial system to study the cytotoxic potential of stannous chloride. It is known that SnCl(2) induces lesions that could be mediated by reactive oxygen species (ROS). We, thus, investigated the existence of cross-adaptive response between hydrogen peroxide (H(2)O(2)) and SnCl(2) and the role of the OxyR system known to promote cellular protection against oxidative damages. Here we describe the results obtained with prior treatment of different Escherichia coli strains with sub-lethal doses of H(2)O(2), followed by incubation with SnCl(2). Our data show that H(2)O(2) is capable of inducing cross-adaptive response against the lethality promoted by SnCl(2), suggesting the OxyR system participation through catalase, alkyl hydroperoxide reductase and superoxide dismutase enzymes
Assuntos
Adaptação Biológica/fisiologia , Proteínas de Ligação a DNA , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteínas Repressoras/metabolismo , Compostos de Estanho/toxicidade , Fatores de Transcrição/metabolismo , Contagem de Células , Dano ao DNA , Escherichia coli/fisiologia , Proteínas de Escherichia coli , Genótipo , Oxirredução , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de TempoRESUMO
It was demonstrated that tin, as stannous chloride (SnCl(2)), can facilitate the neuromuscular transmission by accelerating the transmitter release from the nerve terminals in the mouse. When this salt is injected into laboratory animals, it can produce stimulation or depression of the central nervous system. Because calcium (Ca(2+)) influx into the cytoplasm is indispensable to release the transmitter, it would be possible that SnCl(2) increases the Ca(2+) influx at the nerve terminals but not by blocking the K(+) channels. SnCl(2) is known to inhibit the immune response in rodents and to induce tumor generation in thyroid gland. There is no general agreement regarding its genotoxicity and it was discussed that the effects of this salt might depend on the physicochemical conditions and the route of its administration. SnCl(2) has been used in many sectors of human interest, such as food industry and nuclear medicine. This salt is directly administered to human beings endovenously, when it is used as a reducing agent to prepare 99mTc-radiopharmaceuticals which are also used for cerebral studies. SnCl(2) is capable to promote the generation of reactive oxygen species (ROS) that are responsible for the oxidative stress. Oxidative stress has been related with aging and other neurological diseases. So, it is relevant to evaluate other biological effects of SnCl(2). We decided to study these effects using Escherichia coli mutant strains, deficient in DNA repair genes, and supercoiled plasmid DNA. We evaluated the influence of medicinal plants, metal chelating agents, and ROS scavengers against the SnCl(2) deleterious effects. Our results show that SnCl(2) produced lesions in vitro as well as in vivo. This inactivation may be due to the production of ROS. We observed that the genotoxic effect of SnCl(2) was partly inhibited or disappeared, when the treatments were done in the presence of medicinal plants, metal chelating agents, and ROS scavengers. In conclusion, these findings suggest that the SnCl(2) biological effects may be associated with the generation of ROS. Moreover, we can speculate that ROS could be associated with the detrimental effects in the brain due to exogenous or endogenous metals.
Assuntos
DNA Bacteriano/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Compostos de Estanho/toxicidade , Animais , Depressores do Sistema Nervoso Central/toxicidade , Estimulantes do Sistema Nervoso Central/toxicidade , Quelantes/farmacologia , Dano ao DNA , Reparo do DNA/genética , DNA Bacteriano/análise , Escherichia coli/genética , Mutação , Extratos Vegetais/farmacologia , Plasmídeos/análise , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética , Espécies Reativas de Oxigênio/antagonistas & inibidores , Especificidade da EspécieRESUMO
Plants have been related to our lives, being used as medicine, regardless of scientific evidence of side effects. This work analyses the toxicological effects of Chrysobalanus icaco L. aqueous extract, used in different pathologies. It was studied through: (i) alteration of plasmid pUC 9.1 topology; (ii) survival of bacterial strains submitted, or not, to previous treatment with SnCl2; (iii) transformation efficiency of E. coli strain by the treatment with the plasmid pUC 9.1. In (i), the treatment of the plasmid resulted in DNA single-strand breaks (SSB). A decrease of the lethal effect induced by SnCl2 in presence of the extract was found, while no C. icaco bacterial survival reduction was observed. The transformation efficiency of the plasmid was also reduced. Results suggest that the extract could present a potential genotoxic effect, as demonstrated either by the induction of SSB in plasmid or in transformation efficiency experiments. Finally, it presents an antioxidant action.
Assuntos
Chrysobalanaceae , Extratos Vegetais/toxicidade , Antioxidantes/farmacologia , Dano ao DNA , Escherichia coli/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta , Plasmídeos/efeitos dos fármacos , Transformação Bacteriana/efeitos dos fármacosRESUMO
The toxic effects of SnCl2 in K562 cells were analyzed in this study. This cell line is resistant to reactive oxygen species (ROS) making it suitable to evaluate the impact of SnCl2 in culture either through ROS or by direct toxicity using Trypan blue dye exclusion, comet and flow cytometry assays. An important loss of viability induced by SnCl2 in a dose-response manner was observed in cells treated in Tris-buffered saline (TBS). This necrotic cell death was further confirmed by flow cytometry. On the other hand, there was no loss of viability when cells were treated in rich medium (RPMI). DNA damage was visualized in SnCl2-treated K562 cells in both tested conditions. The data indicate that SnCl2 induces DNA damage and reduces K562 viability. Both actions seem to be correlated with ROS formation and direct linkage to DNA.
Assuntos
Mutagênicos/toxicidade , Compostos de Estanho/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Corantes , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva , Espécies Reativas de Oxigênio/farmacologia , Azul TripanoRESUMO
Good quality scientific teaching depends on the ability of researchers to translate laboratory experiments into high school and undergraduate classes, bridging the advanced and basic science with common knowledge. A fast-growing field in biomedical sciences is oxidative stress, which has been associated to several diseases, including cancer and neurodegenerative disorders. We suggest herein a simple methodology for exploring DNA damage as an introductory pathway to these themes. The potential of natural or artificial products to induce DNA strand breaks can be easily tested in supercoiled plasmids incubated with selected products followed by agarose gel electrophoresis. This is designed to detect single and double strand breaks caused by reactive oxygen species generated by the products being tested. The altered topology of the damaged plasmid migrates slowly in the gel, creating a new band. We further introduce the quantitation of supercoiled DNA forms using densitometry of the gel with a digital camera; the values can then be used to estimate the number of breaks per genome using Poisson distribution. The system is inexpensive, rapid, and does not need high-cost equipment and supplies and can be performed in high schools and undergraduate classes with a minimal structure.
RESUMO
The current Chagas disease treatment is based on two drugs, nifurtimox and benznidazole, which is considered unsatisfactory, not only because of the narrow therapeutic range but also because of the associated toxicity. Natural products are considered an important source of biologically active compounds against various infectious organisms. Numerous Piper species are used in traditional medicine to treat parasitic diseases. In this paper, we study the activity of extracts and fractions obtained from Piper jericoense plant against epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi. In addition, we evaluated the cytotoxic, mutagenic and genotoxic activities of the F4 fraction obtained from one of the more promising extracts. We obtained four extracts, one of which presented low toxicity and high trypanocidal activity. This extract was separated into eight fractions, and the F4 fraction presented better results than the other extracts and had a higher selectivity index than the reference drug, benznidazole. This fraction was not cytotoxic, mutagenic or genotoxic.
Assuntos
Estágios do Ciclo de Vida/efeitos dos fármacos , Piper/química , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fracionamento Químico , Meios de Cultura , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Testes de Mutagenicidade , Nifurtimox/farmacologia , Nitroimidazóis/farmacologia , Testes de Sensibilidade Parasitária , Extratos Vegetais/isolamento & purificação , Tripanossomicidas/isolamento & purificação , Trypanosoma cruzi/crescimento & desenvolvimentoRESUMO
Stevioside is widely used daily in many countries as a non-caloric sugar substitute. Its sweetening power is higher than that of sucrose by approximately 250-300 times, being extensively employed as a household sweetener, or added to beverages and food products. The purpose of this study was to ascertain stevioside genotoxic and cytotoxic potentiality in different biological systems, as its use continues to increase. Agarose gel electrophoresis and bacterial transformation were employed to observe the occurrence of DNA lesions. In addition to these assays, Escherichia coli strains were incubated with stevioside so that their survival fractions could be obtained. Results show absence of genotoxic activity through electrophoresis and bacterial transformation assays and drop of survival fraction of E. coli strains deficient in rec A and nth genes, suggesting that stevioside (i) is cytotoxic; (ii) could need metabolization to present deleterious effects on cells; (iii) is capable of generating lesions in DNA and pathways as base excision repair, recombination and SOS system would be important to recover these lesions.
Assuntos
Diterpenos do Tipo Caurano/toxicidade , Glucosídeos/toxicidade , Mutagênicos/toxicidade , Edulcorantes/toxicidade , DNA Bacteriano/efeitos dos fármacos , Eletroforese em Gel de Ágar , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Plasmídeos/efeitos dos fármacos , Plasmídeos/metabolismo , Transformação BacterianaRESUMO
Stannous chloride (SnCl2) is employed as a reducing agent to obtain Technetium-99m-labelled radiophamaceuticals in nuclear medicine kits, being injected endovenously in humans. Toxic effects of these kits were not studied, thus making it important to evaluate their impact in humans. In this study, the toxic effects were evaluated from peripheral blood nuclear cells (PBNC) from patients who received radiopharmaceuticals obtained using such kits. The analyses included results performed by comet assay. DNA damage was visualized in PBNC samples collected within a time up to 2 hr, and 24 hr after radiopharmaceutical injection in the patients. Initially we observed an increase of comet signals, which subsequently were reduced to zero after 24 hr. The diminishing of comet amounts probably is associated with DNA repair of damaged cells or with the elimination by apoptosis of cells whose DNA are not repaired.