Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 157(4): 467-479, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35022821

RESUMO

Physical exercise is an important therapeutic agent for women with diabetes during gestation. However, its histophysiological consequences for the placenta remain unclear. In this study, we evaluated the expression of VEGF-A, IL1ß, TNFα, and type I collagen in the placentas of diabetic rats subjected to a swimming program. Thirty rats were divided into the following groups: CG, pregnant nondiabetic rats; CEG, nondiabetic pregnant rats subjected to swimming; DG, pregnant diabetic rats; DEG, pregnant diabetic rats subjected to swimming; DIG, pregnant diabetic rats treated with insulin; DIEG, pregnant diabetic rats treated with insulin and subjected to swimming. Diabetes was induced using streptozotocin [50 mg/kg intraperitoneally (i.p.)], and insulin was administered at a dose of 5 U/day i.p. (2 U at 10 am and 3 U at 7 pm) in the DIG group; in the DIEG group, insulin was administered at a dose of only 2 U/day at 7 pm. The rats were sacrificed on the 20th day of gestation. There was an increase in the expression of IL-1ß, TNF-α, VEGF-A, and type I collagen and a higher apoptotic index in the placentas of the DG and DEG groups, but there was a reduction in glycemia in the latter group. In the DIG and DIEG groups, the levels remained similar to those of the control; however, in these groups the reduction was more significant for all analyzed parameters. Therefore, in rats induced to diabetes during pregnancy, swimming, although reducing glycemic levels, did not prevent immunohistochemical changes in the placenta, suggesting the need for a multidisciplinary protocol associated with traditional pharmacological treatment.


Assuntos
Diabetes Mellitus Experimental , Insulina , Animais , Apoptose , Colágeno , Colágeno Tipo I , Citocinas , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Feminino , Humanos , Insulina/metabolismo , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar , Natação/fisiologia , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
2.
Biotech Histochem ; 98(2): 112-125, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36106457

RESUMO

We investigated the effects of B. thuringiensis-based biological insecticides, XenTari and Dipel, and deltamethrin on the reproductive development of pups of pregnant rats. Twenty 90-day-old pregnant rats were divided randomly onto four equal groups: control group (GC) administered only water; XenTari group (GX) administered 1 mg XenTari (containing Cry1Ac toxin of B. thuringiensis)/100 g body weight; Dipel group (GDi) administered 1 mg Dipel (containing Cry1Aa, Cry1Ab and Cry1Ac toxins of B. thuringiensis)/100 g body weight; and a deltamethrin group (GDe) administered 2 mg deltamethrin (0.08 ml Keshet 25EC)/kg body weight as a positive control. Insecticides were administered by gavage at doses of 1 mg/100 g/day (GX and GDi), and 2 mg/kg/day (GDe) during pregnancy and lactation. Treatment with both biologic and synthetic insecticides reduced the weight gain of the mothers. The biological insecticides reduced the number, weight and length, and increased malformation and mortality of the offspring. In female offspring for all three groups administered insecticides, opening of the vagina was delayed, metestrus was increased and estrogen and progesterone levels were reduced compared to proestrus, estrus and metestrus of the cycle. The ovaries of female offspring of all three groups administered insecticides contained numerous tertiary and atretic follicles, few corpora lutea, primary and secondary follicles, and reduced estrogen receptors compared to controls. In male offspring, all three groups exposed to insecticides exhibited reduced testosterone levels. Histopathological changes in the testes including vacuolation and desquamation of the seminiferous epithelium were observed only in the GX and GDi groups. The number of androgen receptors was reduced significantly in the testes and testicular morphometry revealed reduced tubule diameter, height of the seminiferous epithelium and total tubule length compared to the control. The biological insecticides, XenTari and Dipel, administered in sublethal doses to pregnant rats, caused reproductive changes in the offspring similar to those of the insecticide, deltamethrin.


Assuntos
Bacillus thuringiensis , Inseticidas , Piretrinas , Gravidez , Ratos , Masculino , Feminino , Animais , Inseticidas/toxicidade , Piretrinas/toxicidade , Peso Corporal
3.
Reprod Sci ; 29(4): 1111-1123, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35025098

RESUMO

Gestational diabetes mellitus (GDM) promotes changes in the placenta and fetuses, due to oxidative stress. Antioxidants can reduce oxidative stress in the placenta. We tested the hypothesis that melatonin (Mel) can prevent these effects in the placenta and fetuses, analyzing their histology, histochemistry, morphometry, and immunohistochemistry. Thirty albino rats were used, divided into groups: CG-pregnant non-diabetic rats; GD-pregnant diabetic rats; GD + Mel-pregnant diabetic rats treated with melatonin. Diabetes was induced by streptozotocin at a dosage of 50 mg/kg i.p. Melatonin was administered in daily injections of 0.8 mg/kg i.p. Melatonin prevented the placental weight and fetal weight and length from increasing, in addition to histomoformetric, histochemical, and immunohistochemical changes in the placentas, compared to the placentas of diabetic females (GD). Thus, we conclude that melatonin has a great potential to prevent placental changes due to GDM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Melatonina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Gestacional/prevenção & controle , Feminino , Feto , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Placenta , Gravidez , Ratos
4.
Anim Reprod ; 16(4): 810-818, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32368258

RESUMO

Metronidazole is an antiprotozoal and antibacterial used in gynecology and obstetrics for the treatment of parasitic infections. However, despite having clinical use for more than three decades, questions about the safety of its use during pregnancy is not well understood. Thus, the present study evaluated the effect of metronidazole on placental and fetal development in pregnant rats. Metronidazole was orally administered by gavage at a dosage of 130 mg/kg for 7 and 14 days. Morphological analysis, morphometry and immunohistochemistry were performed at the implantation sites and placentas with 14 days of development. The results showed that in the treated group there was a significant reduction in the number of implantation sites, total placental disc area and constituent elements of the labyrinth and spongiotrophoblast layers. Histochemical analysis revealed no significant changes in the content of collagen, elastic and reticular fibers. The TUNEL test showed apoptotic activity in the implantation sites and placentas with 14 days of development independent of the treatment. There was no evidence of malformation in the neonates. However, there was a significant reduction in the number and weight of neonates in the group treated with metronidazole when compared to the control group. Thus, it is concluded that the administration of 130 mg/kg of metronidazole during pregnancy in rats, in addition to interfering with the number of implanted embryos, promotes changes in placental structure and interferes with fetal development. This suggests that this drug should be used with caution during pregnancy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa