Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111745, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396071

RESUMO

Brominated diphenyl ethers (BDEs) are halogenated flame retardants. Several concerns related to persistence and toxicity of BDEs have been resulted in a growing need of BDEs replacement. The use of halogen-free flame retardants (HFFR) has increased as a safer alternative, but little information is available on their toxic potential for environmental health and for developing organisms. Therefore, the aim of this study was to evaluate and compare the toxicity of three congeners of BDEs (BDE-47, BDE-99 and BDE-154) with an HFFR (aluminum diethylphosphinate, ALPI) on zebrafish (Danio rerio) by assessing endpoints of lethality, sub-lethality and teratogenicity at the earlier stages of development. The highest tested concentration of BDE-47 (12.1 mg/L) induced pericardium and yolk sac edemas that first appeared at 48 h post-fertilization (hpf) and then were mostly reabsorbed until 144 hpf. BDE-47 also showed a slight but non-significant tendency to affect swim bladder inflation. The rate of edemas increased in a concentration-dependent manner after exposure to BDE-99, but there were no significant differences. In addition, the congener BDE-99 also presented a slight and non-significant effect on swim bladder inflation, but only at the highest concentration tested. Regarding BDE-154 exposure, the rate of edemas and swim bladder inflation were not affected. Finally, in all ALPI exposure concentrations (0.003 up to 30 mg/L), no sub-lethal or teratogenic effects were observed on developing organisms until 96 hpf. Although further studies are needed, our results demonstrate that when comparing the developmental toxicity induced by flame retardants in zebrafish, the HFFR ALPI may be considered a more suitable alternative to BDE-47.


Assuntos
Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Halogênios , Bifenil Polibromatos
2.
Chemosphere ; 340: 139894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37607599

RESUMO

Tebuthiuron (TBU), a phenylurea herbicide, is widely applied in agricultural and non-agricultural soils. Because TBU resists degradation, it can contaminate water and reach the biota once it is released into the environment. However, the potential toxic effects of TBU on aquatic developing organisms have been poorly studied. By taking advantage of the early-life stages of zebrafish (Danio rerio), we have combined morphological, biochemical, behavioural, and molecular approaches to investigate the developmental toxicity triggered by environmentally relevant concentrations (from 0.1 to 1000 µg/L) of TBU. Exposure to TBU did not elicit morphological abnormalities but it significantly delayed hatching. In addition, TBU altered the frequency of tail coils in one-day post-fertilization (dpf) old embryos. Moreover, TBU exposure during four days significantly inhibited the whole body AChE activity of larvae. At the molecular level, TBU did not significantly affect the mRNA levels of four genes (elavl3, gfap, gap43, and shha) that play key roles during the neurodevelopment of zebrafish. By assessing the motor responses to repeated light-dark stimuli, 6 dpf larvae exposed to TBU displayed hyperactivity, showing greater travelling distance during the dark periods. Our categorization of swimming speed revealed an interesting finding - after the light was turned off, the exposed larvae abandoned the freezing mode (<2 mm/s) and travelled mainly at cruising speed (2-20 mm/s), showing that the larval hyperactivity did not translate into higher swimming velocity. Overall, our results offer new insights into the TBU toxicity to developing organisms, namely effects in AChE activity and hyperactivity, providing support data for future studies considering environmental risk assessment of this herbicide.


Assuntos
Herbicidas , Peixe-Zebra , Animais , Agricultura , Biota , Herbicidas/toxicidade , Larva
3.
Biomed Res Int ; 2014: 940952, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24696865

RESUMO

This study aims to evaluate the effects of polymorphisms in glutathione (GSH-) related genes (GSTM1, GSTT1, GSTP1, GCLM, and GCLC) in the distribution of Hg in the blood compartments in humans exposed to methylmercury (MeHg). Subjects (n = 88), exposed to MeHg from fish consumption, were enrolled in the study. Hg species in the plasma compartment were determined by LC-ICP-MS, whereas genotyping was performed by PCR assays. Mean total Hg levels in plasma (THgP) and whole blood (THgB) were 10 ± 4.2 and 37 ± 21, whereas mean levels of plasmatic MeHg (MeHgP), inorganic Hg (IHgP), and HgP/HgB were 4.3 ± 2.9, 5.8 ± 2.3 µg/L, and 0.33 ± 0.15, respectively. GSTM1 and GCLC polymorphisms influence THgP and MeHgP (multivariate analyses, P < 0.050). Null homozygotes for GSTM1 showed higher THgP and MeHgP levels compared to subjects with GSTM1 (THgP ß = 0.22, P = 0.035; MeHgP ß = 0.30, P = 0.050) and persons carrying at least one T allele for GCLC had significant higher MeHgP (ß = 0.59, P = 0.046). Also, polymorphic GCLM subjects had lower THgP/THgB than those with the nonvariant genotype. Taken together, data of this study suggest that GSH-related polymorphisms may change the metabolism of MeHg by modifying the distribution of mercury species iin plasma compartment and the HgP/HgB partitioning.


Assuntos
Comportamento Alimentar , Glutationa/genética , Mercúrio/sangue , Compostos de Metilmercúrio/sangue , Polimorfismo Genético , Animais , Biomarcadores/sangue , Brasil , Peixes , Frequência do Gene/genética , Genótipo , Humanos , Estilo de Vida , Carne , Análise Multivariada
4.
Sci Total Environ ; 463-464: 319-25, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23827356

RESUMO

Methylmercury (MeHg) toxicity may vary widely despite similar levels of exposure. This is hypothetically related to genetic differences in enzymes metabolizing MeHg. MeHg causes oxidative stress in experimental models but little is known about its effects on humans. The aims of the present study was to evaluate the effects of polymorphisms in glutathione (GSH)-related genes (GSTM1, GSTT1, GSTP1 and GCLM) on Hg concentrations in blood and hair, as well as MeHg-related effects on catalase (CAT) and glutathione-peroxidase (GPx) activity and GSH concentrations. Study subjects were from an Amazonian population in Brazil chronically exposed to MeHg from fish. Hg in blood and hair were determined by ICP-MS, CAT, GPx and GSH were determined by spectrophotometry, and multiplex PCR (GSTM1 and GSTT1) and TaqMan assays (GSTP1 and GCLM) were used for genotyping. Mean Hg concentrations in blood and hair were 48±36 µg/L and 14±10 µg/g. Persons with the GCLM-588 TT genotype had lower blood and hair Hg than did C-allele carriers (linear regression for Hg in blood ß=-0.32, p=0.017; and hair ß=-0.33; p=0.0090; adjusted for fish intake, age and gender). GSTM1*0 homozygous had higher blood (ß=0.20; p=0.017) and hair Hg (hair ß=0.20; p=0.013). Exposure to MeHg altered antioxidant status (CAT: ß=-0.086; GSH: ß=-0.12; GPx: ß=-0.16; all p<0.010; adjusted for gender, age and smoking). Persons with GSTM1*0 had higher CAT activity in the blood than those with GSTM1. Our data thus indicate that some GSH-related polymorphisms, such as GSTM1 and GCLM may modify MeHg metabolism and Hg-related antioxidant effects.


Assuntos
Exposição Ambiental/efeitos adversos , Glutationa/genética , Intoxicação por Mercúrio/genética , Compostos de Metilmercúrio/análise , Polimorfismo Genético/genética , Adulto , Brasil , Estudos Transversais , Feminino , Técnicas de Genotipagem , Glutamato-Cisteína Ligase/genética , Glutationa/sangue , Glutationa S-Transferase pi/genética , Glutationa Transferase/genética , Cabelo/química , Humanos , Masculino , Intoxicação por Mercúrio/sangue , Compostos de Metilmercúrio/sangue , Reação em Cadeia da Polimerase Multiplex , Oxirredução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa