Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 639-646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214875

RESUMO

Iron (Fe) is the fourth most abundant element on the planet, and iron-oxidising bacteria (FeOB) play an important role in the biogeochemical cycle of this metal in nature. FeOB stands out as Fe oxidisers in microaerophilic environments, and new members of this group have been increasingly discussed in the literature, even though their isolation can still be challenging. Among these bacteria is the Gallionellaceae family, mainly composed of neutrophilic FeOB, highlighting Gallionella ferruginea, and nitrite-oxidiser genera. In the previous metagenomic study of the biofilm and sediments of the cooling system from the Irapé hydroelectric power plant (HPP-Irapé), 5% of the total bacteria sequences were related to Gallionellaceae, being 99% unclassified at genus level. Thus, in the present study, a phylogenetic tree based on this family was constructed, in order to search for shared and unique Gallionellaceae signatures in a deep phylogenetic level affiliation and correlated them with geomorphologic characteristics. The results revealed that Gallionella and Ferrigenium were ubiquitous reflecting their ability to adapt to various locations in the power plant. The cave was considered a hotspot for neutrophilic FeOB since it harboured most of the Gallionellaceae diversity. Microscopic biosignatures were detected only in the CS1 sample, which presented abundance of the stalk-forming Ferriphaselus and of the sheath-forming Crenothrix. Further studies are required to provide more detailed insights on Gallionellaceae distribution and diversity patterns in hydroelectric power plants, particularly its biotechnological potential in this industry.


Assuntos
Gallionellaceae , Gallionellaceae/genética , Filogenia , Ferro , Metais , Metagenômica , Oxirredução
2.
Braz J Microbiol ; 52(1): 363-372, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33247398

RESUMO

INTRODUCTION: Freshwater ecosystems provide propitious conditions for the acquisition and spread of antibiotic resistance genes (ARGs), and integrons play an important role in this process. MATERIAL AND METHODS: In the present study, the diversity of putative environmental integron-cassettes, as well as their potential bacterial hosts in the Velhas River (Brazil), was explored through intI-attC and 16S rRNA amplicons deep sequencing. RESULTS AND DISCUSSION: ORFs related to different biological processes were observed, from DNA integration to oxidation-reduction. ARGs-cassettes were mainly associated with class 1 mobile integrons carried by pathogenic Gammaproteobacteria, and possibly sedentary chromosomal integrons hosted by Proteobacteria and Actinobacteria. Two putative novel ARG-cassettes homologs to fosB3 and novA were detected. Regarding 16SrRNA gene analysis, taxonomic and functional profiles unveiled Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria as dominant phyla. Betaproteobacteria, Alphaproteobacteria, and Actinobacteria classes were the main contributors for KEGG orthologs associated with resistance. CONCLUSIONS: Overall, these results provide new information about environmental integrons as a source of resistance determinants outside clinical settings and the bacterial community in the Velhas River.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Integrons/genética , Bactérias/classificação , Brasil , Ecossistema , Variação Genética , RNA Ribossômico 16S/genética , Rios/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa