Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Environ Microbiol ; 23(12): 7710-7722, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34309161

RESUMO

Exposure to a diverse microbial environment during pregnancy and early postnatal period is important in determining predisposition towards allergy. However, the effect of environmental microbiota exposure during preconception, pregnancy and postnatal life on development of allergy in the child has not been investigated so far. In the S-PRESTO (Singapore PREconception Study of long Term maternal and child Outcomes) cohort, we collected house dust during all three critical window periods and analysed microbial composition using 16S rRNA gene sequencing. At 6 and 18 months, the child was assessed for eczema by clinicians. In the eczema group, household environmental microbiota was characterized by presence of human-associated bacteria Actinomyces, Anaerococcus, Finegoldia, Micrococcus, Prevotella and Propionibacterium at all time points, suggesting their possible contributions to regulating host immunity and increasing the susceptibility to eczema. In the home environment of the control group, putative protective effect of an environmental microbe Planomicrobium (Planococcaceae family) was observed to be significantly higher than that in the eczema group. Network correlation analysis demonstrated inverse relationships between beneficial Planomicrobium and human-associated bacteria (Actinomyces, Anaerococcus, Finegoldia, Micrococcus, Prevotella and Propionibacterium). Exposure to natural environmental microbiota may be beneficial to modulate shed human-associated microbiota in an indoor environment.


Assuntos
Eczema , Microbiota , Bactérias/genética , Criança , Estudos de Coortes , Feminino , Humanos , Microbiota/genética , Gravidez , RNA Ribossômico 16S/genética
2.
BMC Microbiol ; 21(1): 191, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172012

RESUMO

BACKGROUND: The compromised gut microbiome that results from C-section birth has been hypothesized as a risk factor for the development of non-communicable diseases (NCD). In a double-blind randomized controlled study, 153 infants born by elective C-section received an infant formula supplemented with either synbiotic, prebiotics, or unsupplemented from birth until 4 months old. Vaginally born infants were included as a reference group. Stool samples were collected from day 3 till week 22. Multi-omics were deployed to investigate the impact of mode of delivery and nutrition on the development of the infant gut microbiome, and uncover putative biological mechanisms underlying the role of a compromised microbiome as a risk factor for NCD. RESULTS: As early as day 3, infants born vaginally presented a hypoxic and acidic gut environment characterized by an enrichment of strict anaerobes (Bifidobacteriaceae). Infants born by C-section presented the hallmark of a compromised microbiome driven by an enrichment of Enterobacteriaceae. This was associated with meta-omics signatures characteristic of a microbiome adapted to a more oxygen-rich gut environment, enriched with genes associated with reactive oxygen species metabolism and lipopolysaccharide biosynthesis, and depleted in genes involved in the metabolism of milk carbohydrates. The synbiotic formula modulated expression of microbial genes involved in (oligo)saccharide metabolism, which emulates the eco-physiological gut environment observed in vaginally born infants. The resulting hypoxic and acidic milieu prevented the establishment of a compromised microbiome. CONCLUSIONS: This study deciphers the putative functional hallmarks of a compromised microbiome acquired during C-section birth, and the impact of nutrition that may counteract disturbed microbiome development. TRIAL REGISTRATION: The study was registered in the Dutch Trial Register (Number: 2838 ) on 4th April 2011.


Assuntos
Bactérias/genética , Cesárea/efeitos adversos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma/genética , Biodiversidade , Método Duplo-Cego , Humanos , Lactente , Recém-Nascido
3.
Neurobiol Dis ; 135: 104744, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31931139

RESUMO

Structural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation.


Assuntos
Doença de Huntington/microbiologia , Proteínas da Mielina/metabolismo , Bainha de Mielina/patologia , Substância Branca/microbiologia , Animais , Bactérias/isolamento & purificação , Corpo Caloso/metabolismo , Corpo Caloso/microbiologia , Modelos Animais de Doenças , Doença de Huntington/patologia , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Plasticidade Neuronal/fisiologia , Oligodendroglia/metabolismo , Córtex Pré-Frontal/metabolismo , Substância Branca/patologia
4.
BMC Microbiol ; 20(1): 81, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264819

RESUMO

BACKGROUND: There is a need for better tools to evaluate new or repurposed TB drugs. The whole blood bactericidal activity (WBA) assay has been advocated for this purpose. We investigated whether transcriptional responses in the WBA assay resemble TB responses in vivo, and whether the approach might additionally reveal mechanisms of action. RESULTS: 1422 of 1798 (79%) of differentially expressed genes in WBA incubated with the standard combination of rifampicin, isoniazid, pyrazinamide and ethambutol were also expressed in sputum (P < 0.0001) obtained from patients taking the same combination of drugs; these comprised well-established treatment-response genes. Gene expression profiles in WBA incubated with the standard drugs individually, or with moxifloxacin or faropenem (with amoxicillin and clavulanic acid) clustered by individual drug exposure. Distinct pathways were detected for individual drugs, although only with isoniazid did these relate to known mechanisms of drug action. CONCLUSIONS: Substantial agreement between whole blood cultures and sputum and the ability to differentiate individual drugs suggest that transcriptomics may add value to the whole blood assay for evaluating new TB drugs.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Sangue/microbiologia , Perfilação da Expressão Gênica/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Escarro/microbiologia , Combinação de Medicamentos , Reposicionamento de Medicamentos , Etambutol/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Isoniazida/farmacologia , Modelos Biológicos , Mycobacterium tuberculosis/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Pirazinamida/farmacologia , Rifampina/farmacologia
5.
BMC Infect Dis ; 20(1): 403, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517725

RESUMO

BACKGROUND: Current tools for diagnosing latent TB infection (LTBI) detect immunological memory of past exposure but are unable to determine whether exposure is recent. We sought to identify a whole-blood transcriptome signature of recent TB exposure. METHODS: We studied household contacts of TB patients; healthy volunteers without recent history of TB exposure; and patients with active TB. We performed whole-blood RNA sequencing (in all), an interferon gamma release assay (IGRA; in contacts and healthy controls) and PET/MRI lung scans (in contacts only). We evaluated differentially-expressed genes in household contacts (log2 fold change ≥1 versus healthy controls; false-discovery rate < 0.05); compared these to differentially-expressed genes seen in the active TB group; and assessed the association of a composite gene expression score to independent exposure/treatment/immunological variables. RESULTS: There were 186 differentially-expressed genes in household contacts (n = 26, age 22-66, 46% male) compared with healthy controls (n = 5, age 29-38, 100% male). Of these genes, 141 (76%) were also differentially expressed in active TB (n = 14, age 27-69, 71% male). The exposure signature included genes from inflammatory response, type I interferon signalling and neutrophil-mediated immunity pathways; and genes such as BATF2 and SCARF1 known to be associated with incipient TB. The composite gene-expression score was higher in IGRA-positive contacts (P = 0.04) but not related to time from exposure, isoniazid prophylaxis, or abnormalities on PET/MRI (all P > 0.19). CONCLUSIONS: Transcriptomics can detect TB exposure and, with further development, may be an approach of value for epidemiological research and targeting public health interventions.


Assuntos
Tuberculose Latente/diagnóstico , RNA/sangue , Adulto , Idoso , Fatores de Transcrição de Zíper de Leucina Básica/genética , Estudos de Casos e Controles , Busca de Comunicante , Feminino , Humanos , Interferon Tipo I/metabolismo , Tuberculose Latente/microbiologia , Tuberculose Latente/transmissão , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/metabolismo , Mapas de Interação de Proteínas/genética , RNA/química , RNA/metabolismo , Receptores Depuradores Classe F/genética , Proteínas Supressoras de Tumor/genética , Adulto Jovem
6.
Neurobiol Dis ; 127: 65-75, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802499

RESUMO

Structural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation.


Assuntos
Corpo Caloso/patologia , Microbioma Gastrointestinal/fisiologia , Doença de Huntington/microbiologia , Bainha de Mielina/patologia , Plasticidade Neuronal/fisiologia , Substância Branca/patologia , Animais , Modelos Animais de Doenças , Doença de Huntington/patologia , Camundongos
7.
J Allergy Clin Immunol ; 142(1): 86-95, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452199

RESUMO

BACKGROUND: Dynamic establishment of the nasal microbiota in early life influences local mucosal immune responses and susceptibility to childhood respiratory disorders. OBJECTIVE: The aim of this case-control study was to monitor, evaluate, and compare development of the nasal microbiota of infants with rhinitis and wheeze in the first 18 months of life with those of healthy control subjects. METHODS: Anterior nasal swabs of 122 subjects belonging to the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) birth cohort were collected longitudinally over 7 time points in the first 18 months of life. Nasal microbiota signatures were analyzed by using 16S rRNA multiplexed pair-end sequencing from 3 clinical groups: (1) patients with rhinitis alone (n = 28), (2) patients with rhinitis with concomitant wheeze (n = 34), and (3) healthy control subjects (n = 60). RESULTS: Maturation of the nasal microbiome followed distinctive patterns in infants from both rhinitis groups compared with control subjects. Bacterial diversity increased over the period of 18 months of life in control infants, whereas infants with rhinitis showed a decreasing trend (P < .05). An increase in abundance of the Oxalobacteraceae family (Proteobacteria phylum) and Aerococcaceae family (Firmicutes phylum) was associated with rhinitis and concomitant wheeze (adjusted P < .01), whereas the Corynebacteriaceae family (Actinobacteria phylum) and early colonization with the Staphylococcaceae family (Firmicutes phylum; 3 weeks until 9 months) were associated with control subjects (adjusted P < .05). The only difference between the rhinitis and control groups was a reduced abundance of the Corynebacteriaceae family (adjusted P < .05). Determinants of nasal microbiota succession included sex, mode of delivery, presence of siblings, and infant care attendance. CONCLUSION: Our results support the hypothesis that the nasal microbiome is involved in development of early-onset rhinitis and wheeze in infants.


Assuntos
Microbiota , Mucosa Nasal/microbiologia , Sons Respiratórios , Rinite/microbiologia , Estudos de Casos e Controles , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mucosa Nasal/imunologia , Sons Respiratórios/imunologia , Rinite/imunologia , Singapura
8.
PLoS Genet ; 11(11): e1005614, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26539826

RESUMO

Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin's carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.


Assuntos
Adaptação Fisiológica , Genes Fúngicos , Filogenia , Pele/microbiologia , Transferência Genética Horizontal , Humanos , Malassezia/classificação , Malassezia/genética , Malassezia/fisiologia
9.
BMC Genomics ; 18(1): 829, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078745

RESUMO

BACKGROUND: Viral populations are complex, dynamic, and fast evolving. The evolution of groups of closely related viruses in a competitive environment is termed quasispecies. To fully understand the role that quasispecies play in viral evolution, characterizing the trajectories of viral genotypes in an evolving population is the key. In particular, long-range haplotype information for thousands of individual viruses is critical; yet generating this information is non-trivial. Popular deep sequencing methods generate relatively short reads that do not preserve linkage information, while third generation sequencing methods have higher error rates that make detection of low frequency mutations a bioinformatics challenge. Here we applied BAsE-Seq, an Illumina-based single-virion sequencing technology, to eight samples from four chronic hepatitis B (CHB) patients - once before antiviral treatment and once after viral rebound due to resistance. RESULTS: With single-virion sequencing, we obtained 248-8796 single-virion sequences per sample, which allowed us to find evidence for both hard and soft selective sweeps. We were able to reconstruct population demographic history that was independently verified by clinically collected data. We further verified four of the samples independently through PacBio SMRT and Illumina Pooled deep sequencing. CONCLUSIONS: Overall, we showed that single-virion sequencing yields insight into viral evolution and population dynamics in an efficient and high throughput manner. We believe that single-virion sequencing is widely applicable to the study of viral evolution in the context of drug resistance and host adaptation, allows differentiation between soft or hard selective sweeps, and may be useful in the reconstruction of intra-host viral population demographic history.


Assuntos
Evolução Molecular , Genoma Viral , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite B/virologia , Lamivudina/farmacologia , Vírion/genética , Alelos , Substituição de Aminoácidos , Biologia Computacional/métodos , Código de Barras de DNA Taxonômico , Farmacorresistência Viral/efeitos dos fármacos , Frequência do Gene , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/isolamento & purificação , Humanos , Lamivudina/uso terapêutico , Mutação
10.
BMC Infect Dis ; 17(1): 678, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020940

RESUMO

BACKGROUND/AIM: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multidrug-resistant organisms in healthcare settings worldwide, but little is known about MRSA transmission outside of acute healthcare settings especially in Asia. We describe the methods for a prospective longitudinal study of MRSA prevalence and transmission. METHODS: MRSA-colonized individuals were identified from MRSA admission screening at two tertiary hospitals and recruited together with their household contacts. Participants submitted self-collected nasal, axilla and groin (NAG) swabs by mail for MRSA culture at baseline and monthly thereafter for 6 months. A comparison group of households of MRSA-negative patients provided swab samples at one time point. In a validation sub-study, separate swabs from each site were collected from randomly selected individuals, to compare MRSA detection rates between swab sites, and between samples collected by participants versus those collected by trained research staff. Information on each participant's demographic information, medical status and medical history, past healthcare facilities usage and contacts, and personal interactions with others were collected using a self-administered questionnaire. DISCUSSION/CONCLUSION: Understanding the dynamics of MRSA persistence and transmission in the community is crucial to devising and evaluating successful MRSA control strategies. Close contact with MRSA colonized patients may to be important for MRSA persistence in the community; evidence from this study on the extent of community MRSA could inform the development of household- or community-based interventions to reduce MRSA colonization of close contacts and subsequent re-introduction of MRSA into healthcare settings. Analysis of longitudinal data using whole-genome sequencing will yield further information regarding MRSA transmission within households, with significant implications for MRSA infection control outside acute hospital settings.


Assuntos
Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/transmissão , Adulto , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/transmissão , Características da Família , Instalações de Saúde , Humanos , Estudos Longitudinais , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Nariz/microbiologia , Prevalência , Estudos Prospectivos , Singapura , Infecções Estafilocócicas/diagnóstico , Inquéritos e Questionários , Centros de Atenção Terciária
11.
Infect Immun ; 84(9): 2505-23, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27324481

RESUMO

Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Lisossomos/genética , Mycobacterium tuberculosis/genética , Estresse Oxidativo/genética , Transcrição Gênica/genética , Animais , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/genética , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Transcriptoma/genética , Tuberculose/microbiologia , Virulência/genética
12.
Nat Commun ; 15(1): 481, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212309

RESUMO

Abundant cellular transcripts occupy most of the sequencing reads in the transcriptome, making it challenging to assay for low-abundant transcripts. Here, we utilize the adaptive sampling function of Oxford Nanopore sequencing to selectively deplete and enrich RNAs of interest without biochemical manipulation before sequencing. Adaptive sampling performed on a pool of in vitro transcribed RNAs resulted in a net increase of 22-30% in the proportion of transcripts of interest in the population. Enriching and depleting different proportions of the Candida albicans transcriptome also resulted in a 11-13.5% increase in the number of reads on target transcripts, with longer and more abundant transcripts being more efficiently depleted. Depleting all currently annotated Candida albicans transcripts did not result in an absolute enrichment of remaining transcripts, although we identified 26 previously unknown transcripts and isoforms, 17 of which are antisense to existing transcripts. Further improvements in the adaptive sampling of RNAs will allow the technology to be widely applied to study RNAs of interest in diverse transcriptomes.


Assuntos
RNA , Transcriptoma , Transcriptoma/genética , RNA/genética , Análise de Sequência de RNA/métodos , Sequência de Bases , Candida albicans/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
13.
Mol Genet Genomic Med ; 12(1): e2285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740604

RESUMO

BACKGROUND: Beta thalassemia, related to HBB mutation and associated with elevated hemoglobin A2 (HbA2), is an important genetic hemoglobinopathy with high incidences of disease and carrier rates in Singapore. Carrier screening is essential to facilitate prenatal counseling and testing. However, when individuals with elevated HbA2 do not have an identifiable HBB disease-associated variant, there is ambiguity on risk to their offspring. METHODS: We describe a case report of a proband with elevated HbA2, no identifiable HBB disease-associated variant, whose partner was a beta thalassemia carrier. Through clinical HBB gene sequencing, multiplex ligation-dependent probe amplification (MLPA) analysis, as well as targeted Nanopore long read sequencing of selected genes, we performed a complete analysis of HBB including the promoter region, 5'UTR and coding gene sequence, as well as evaluation for potential modifier variants and other rare structural variants. RESULTS: This process identified that the proband was heterozygous for KLF1:c.544T>C (p.Phe182Leu), a potential functional polymorphism previously known to be associated with benign elevated HbA2 levels. The presence of disease variants in the HBB locus was excluded. CONCLUSION: This finding provided clarity and enabled family planning for the proband and her family.


Assuntos
Talassemia alfa , Talassemia beta , Humanos , Gravidez , Feminino , Talassemia beta/diagnóstico , Talassemia beta/genética , Aconselhamento Genético , Mutação , Talassemia alfa/genética , Heterozigoto
14.
NPJ Antimicrob Resist ; 2(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686335

RESUMO

Infectious diarrhoeal diseases remain a substantial health burden in young children in low- and middle-income countries. The disease and its variable treatment options significantly alter the gut microbiome, which may affect clinical outcomes and overall gut health. Antibiotics are often prescribed, but their impact on the gut microbiome during recovery is unclear. Here, we used 16S rRNA sequencing to investigate changes in the gut microbiota in Vietnamese children with acute watery diarrhoea, and highlight the impact of antibiotic treatment on these changes. Our analyses identified that, regardless of treatment, recovery was characterised by reductions in Streptococcus and Rothia species and expansion of Bacteroides/Phocaeicola, Lachnospiraceae and Ruminococcacae taxa. Antibiotic treatment significantly delayed the temporal increases in alpha- and beta-diversity within patients, resulting in distinctive patterns of taxonomic change. These changes included a pronounced, transient overabundance of Enterococcus species and depletion of Bifidobacterium pseudocatenulatum. Our findings demonstrate that antibiotic treatment slows gut microbiota recovery in children following watery diarrhoea.

15.
Nat Commun ; 14(1): 549, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725857

RESUMO

The genetics underlying tuberculosis (TB) pathophysiology are poorly understood. Human genome-wide association studies have failed so far to reveal reproducible susceptibility loci, attributed in part to the influence of the underlying Mycobacterium tuberculosis (Mtb) bacterial genotype on the outcome of the infection. Several studies have found associations of human genetic polymorphisms with Mtb phylo-lineages, but studies analysing genome-genome interactions are needed. By implementing a phylogenetic tree-based Mtb-to-human analysis for 714 TB patients from Thailand, we identify eight putative genetic interaction points (P < 5 × 10-8) including human loci DAP and RIMS3, both linked to the IFNγ cytokine and host immune system, as well as FSTL5, previously associated with susceptibility to TB. Many of the corresponding Mtb markers are lineage specific. The genome-to-genome analysis reveals a complex interactome picture, supports host-pathogen adaptation and co-evolution in TB, and has potential applications to large-scale studies across many TB endemic populations matched for host-pathogen genomic diversity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Estudo de Associação Genômica Ampla , Filogenia , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Genoma , Interações Hospedeiro-Patógeno/genética
16.
Gut Pathog ; 13(1): 13, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632307

RESUMO

BACKGROUND: This study aims to characterize, the gut and oral microbiome in Asian subjects with Crohn's disease (CD) using whole genome shotgun sequencing, thereby allowing for strain-level comparison. METHODS: A case-control study with age, sex and ethnicity matched healthy controls was conducted. CD subjects were limited to well-controlled patients without oral manifestations. Fecal and saliva samples were collected for characterization of gut and oral microbiome respectively. Microbial DNA were extracted, libraries prepared and sequenced reads profiled. Taxonomic diversity, taxonomic association, strain typing and microbial gene pathway analyses were conducted. RESULTS: The study recruited 25 subjects with CD and 25 healthy controls. The oral microbe Streptococcus salivarius was found to be enriched and of concordant strains in the gut and oral microbiome of Crohn's disease subjects. This was more likely in CD subjects with higher Crohn's Disease Activity Index (184.3 ± 2.9 vs 67.1 ± 82.5, p = 0.012) and active disease status (Diarrhoea/abdominal pain/blood-in-stool/fever and fatigue) (p = 0.016). Gut species found to be significantly depleted in CD compared to control (Relative abundance: Median[Range]) include: Faecalibacterium prausnitzii (0.03[0.00-4.56] vs 13.69[5.32-18.71], p = 0.010), Roseburia inulinivorans (0.00[0.00-0.03] vs 0.21[0.01-0.53], p = 0.010) and Alistipes senegalensis (0.00[0.00-0.00] vs 0.00[0.00-0.02], p = 0.029). While Clostridium nexile (0.00[0.00-0.12] vs 0.00[0.00-0.00], p = 0.038) and Ruminococcus gnavus (0.43[0.02-0.33] vs 0.00[0.00-0.13], p = 0.043) were found to be enriched. C. nexile enrichment was not found in CD subjects of European descent. Microbial arginine (Linear-discriminant-analysis: 3.162, p = 0.001) and isoprene (Linear-discriminant-analysis: 3.058, p < 0.001) pathways were found at a higher relative abundance level in gut microbiome of Crohn's disease. CONCLUSIONS: There was evidence of ectopic gut colonization by oral bacteria, especially during the active phase of CD. Previously studied gut microbial differences were detected, in addition to novel associations which could have resulted from geographical/ethnic differences to subjects of European descent. Differences in microbial pathways provide possible targets for microbiome modification.

17.
Sci Rep ; 11(1): 6491, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753763

RESUMO

Klebsiella pneumoniae is an important nosocomial infectious agent with a high antimicrobial resistance (AMR) burden. The application of long read sequencing technologies is providing insights into bacterial chromosomal and putative extra-chromosomal genetic elements (PEGEs) associated with AMR, but also epigenetic DNA methylation, which is thought to play a role in cleavage of foreign DNA and expression regulation. Here, we apply the PacBio sequencing platform to eight Portuguese hospital isolates, including one carbapenemase producing isolate, to identify methylation motifs. The resulting assembled chromosomes were between 5.2 and 5.5Mbp in length, and twenty-six PEGEs were found. Four of our eight samples carry blaCTX-M-15, a dominant Extended Spectrum Beta Lactamase in Europe. We identified methylation motifs that control Restriction-Modification systems, including GATC of the DNA adenine methylase (Dam), which methylates N6-methyladenine (m6A) across all our K. pneumoniae assemblies. There was a consistent lack of methylation by Dam of the GATC motif downstream of two genes: fosA, a locus associated with low level fosfomycin resistance, and tnpB transposase on IncFIB(K) plasmids. Overall, we have constructed eight high quality reference genomes of K. pneumoniae, with insights into horizontal gene transfer and methylation m6A motifs.


Assuntos
Metilação de DNA , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Proteínas de Bactérias/genética , Metilases de Modificação do DNA/genética , Epigenoma , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Resistência beta-Lactâmica
18.
EBioMedicine ; 72: 103596, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34627081

RESUMO

BACKGROUND: Nicaragua experienced a large Zika epidemic in 2016, with up to 50% of the population in Managua infected. With the domesticated Aedes aegypti mosquito as its vector, it is widely assumed that Zika virus transmission occurs within the household and/or via human mobility. We investigated these assumptions by using viral genomes to trace Zika transmission spatially. METHODS: We analysed serum samples from 119 paediatric Zika cases participating in the long-standing Paediatric Dengue Cohort Study in Managua, which was expanded to include Zika in 2015. An optimal spanning directed tree was constructed by minimizing the differences in viral sequence diversity composition between patient nodes, where low-frequency variants were used to increase the resolution of the inferred Zika outbreak dynamics. FINDINGS: Out of the 18 houses where pairwise difference in sample collection dates among all the household members was within 30 days, we only found two where viruses from individuals within the same household were up to 10th-most closely linked to each other genetically. We also identified a substantial number of transmission events involving long geographical distances (n=30), as well as potential super-spreading events in the estimated transmission tree. INTERPRETATION: Our finding highlights that community transmission, often involving long geographical distances, played a much more important role in epidemic spread than within-household transmission. FUNDING: This study was supported by an NUS startup grant (OMS) and grants R01 AI099631 (AB), P01 AI106695 (EH), P01 AI106695-03S1 (FB), and U19 AI118610 (EH) from the US National Institutes of Health.


Assuntos
Genoma Viral/genética , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Zika virus/genética , Adolescente , Aedes/virologia , Animais , Criança , Pré-Escolar , Estudos de Coortes , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/genética , Surtos de Doenças , Epidemias , Feminino , Humanos , Masculino , Mosquitos Vetores/virologia , Nicarágua/epidemiologia
19.
Adv Sci (Weinh) ; 7(17): 2001374, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995131

RESUMO

In order to mitigate antibiotic resistance, a new strategy to increase antibiotic potency and reverse drug resistance is needed. Herein, the translocation mechanism of an antimicrobial guanidinium-functionalized polycarbonate is leveraged in combination with traditional antibiotics to afford a potent treatment for drug-resistant bacteria. Particularly, this polymer-antibiotic combination approach reverses rifampicin resistance phenotype in Acinetobacter baumannii demonstrating a 2.5 × 105-fold reduction in minimum inhibitory concentration (MIC) and a 4096-fold reduction in minimum bactericidal concentration (MBC). This approach also enables the repurposing of auranofin as an antibiotic against multidrug-resistant (MDR) Gram-negative bacteria with a 512-fold MIC and 128-fold MBC reduction, respectively. Finally, the in vivo efficacy of polymer-rifampicin combination is demonstrated in a MDR bacteremia mouse model. This combination approach lays foundational ground rules for a new class of antibiotic adjuvants capable of reversing drug resistance phenotype and repurposing drugs against MDR Gram-negative bacteria.

20.
Cells ; 9(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512864

RESUMO

Influenza viruses have been shown to use autophagy for their survival. However, the proteins and mechanisms involved in the autophagic process triggered by the influenza virus are unclear. Annexin-A1 (ANXA1) is an immunomodulatory protein involved in the regulation of the immune response and Influenza A virus (IAV) replication. In this study, using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 (CRISPR associated protein 9) deletion of ANXA1, combined with the next-generation sequencing, we systematically analyzed the critical role of ANXA1 in IAV infection as well as the detailed processes governing IAV infection, such as macroautophagy. A number of differentially expressed genes were uniquely expressed in influenza A virus-infected A549 parental cells and A549 ∆ANXA1 cells, which were enriched in the immune system and infection-related pathways. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed the role of ANXA1 in autophagy. To validate this, the effect of mechanistic target of rapamycin (mTOR) inhibitors, starvation and influenza infection on autophagy was determined, and our results demonstrate that ANXA1 enhances autophagy induced by conventional autophagy inducers and influenza virus. These results will help us to understand the underlying mechanisms of IAV infection and provide a potential therapeutic target for restricting influenza viral replication and infection.


Assuntos
Anexina A1/metabolismo , Autofagia/genética , Perfilação da Expressão Gênica , Vírus da Influenza A/fisiologia , Análise de Sequência de RNA , Células A549 , Animais , Anexina A1/genética , Autofagossomos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Pulmão/patologia , Camundongos Endogâmicos BALB C , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa