Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 12: 598943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211455

RESUMO

Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-γ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response.


Assuntos
Antígeno B7-H1/metabolismo , Leishmania braziliensis/fisiologia , Leishmaniose/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo
2.
Nutrients ; 11(4)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013737

RESUMO

The innate immune response plays an important role in the pathophysiology of acute respiratory distress syndrome (ARDS). Glutamine (Gln) decreases lung inflammation in experimental ARDS, but its impact on the formation of extracellular traps (ETs) in the lung is unknown. In a mouse model of endotoxin-induced pulmonary ARDS, the effects of Gln treatment on leukocyte counts and ET content in bronchoalveolar lavage fluid (BALF), inflammatory profile in lung tissue, and lung morphofunction were evaluated in vivo. Furthermore, ET formation, reactive oxygen species (ROS) production, glutathione peroxidase (GPx), and glutathione reductase (GR) activities were tested in vitro. Our in vivo results demonstrated that Gln treatment reduced ET release (as indicated by cell-free-DNA content and myeloperoxidase activity), decreased lung inflammation (reductions in interferon-γ and increases in interleukin-10 levels), and improved lung morpho-function (decreased static lung elastance and alveolar collapse) in comparison with ARDS animals treated with saline. Moreover, Gln reduced ET and ROS formation in BALF cells stimulated with lipopolysaccharide in vitro, but it did not alter GPx or GR activity. In this model of endotoxin-induced pulmonary ARDS, treatment with Gln reduced pulmonary functional and morphological impairment, inflammation, and ET release in the lung.


Assuntos
Armadilhas Extracelulares/metabolismo , Glutamina/uso terapêutico , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , DNA , Modelos Animais de Doenças , Endotoxinas , Feminino , Glutamina/farmacologia , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Inflamação/etiologia , Interferon gama/metabolismo , Interleucina-10/metabolismo , Contagem de Leucócitos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Pneumonia/etiologia , Alvéolos Pulmonares , Espécies Reativas de Oxigênio/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa