Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci Technol ; 58(8): 3010-3018, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34294963

RESUMO

The antimicrobial activities of Baccharis dracunculifolia DC essential oil (EO) and hydroalcoholic extract (HE) were evaluated. The EO showed broad antimicrobial activity and its synergistic combination with nisin was tested. Major components of EO were nerolidol, beta-pinene and D-limonene, while artepillin C, rutin and cafeic acid were major phenolics of HE. EO and HE were tested by agar diffusion assay against several strains of bacteria and yeasts, and mixed cultures of bacterial strains. The EO presented the largest spectrum of antimicrobial activity inhibiting all Gram-positive bacteria tested. Yeasts were not inhibited. The effect of EO against mixtures of sensitive and non-sensitive bacteria was tested on milk agar, being the inhibitory effect only observed on mixtures containing susceptible strains. The combination of EO and nisin at ½ MIC was evaluated on the growth curve of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Salmonella Enteritidis during 24 h at 37 °C. The combination EO-nisin was effective and no viable counts of B. cereus, L. monocytogenes and S. Enteritidis was observed, while the individual antimicrobials caused no inhibition. The counts of S. aureus were about 4 log CFU/mL lower in comparison with EO or nisin alone. B. dracunculifolia DC may be a potential source of natural antimicrobials, and its synergistic effect with nisin would reduce the working concentration, minimizing the organoleptic effects associated with this plant antimicrobial.

2.
J Food Sci Technol ; 56(10): 4595-4604, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31686691

RESUMO

Pseudomonas fluorescens can often be isolated from refrigerated raw milk. Two strains of P. fluorescens PL5.4 and PL7.1, isolated from raw buffalo milk, were evaluated for their proteolytic capacity, exopolysaccharide production and biofilm production. Proteolytic activity was observed in both strains. The P. fluorescens PL5.4 strain presented fluorescence in the presence of calcofluor, indicating exopolysaccharide production. Both strains were able to produce biofilm at 7 °C for 72 h. For the biofilm production test on stainless steel, adherent cell counts of up to 7.1, 7.3 and 8.8 log CFU/cm2 at 7, 23 and 30 °C were obtained. Through scanning electron microscopy, it was possible to observe the biofilm produced by the P. fluorescens PL5.4 strain. Proper cleaning and disinfection practices in order are important to reduce bacterial contamination and extend the useful life of raw material and its derivatives.

3.
Prep Biochem Biotechnol ; 46(8): 838-843, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26853378

RESUMO

Antimicrobial peptide P34 is a promising biopreservative for utilization in the food industry. In this work, aqueous biphasic systems (ABS) and aqueous biphasic micellar systems (ABMS) were studied as prestep for purification of peptide P34. The ABS was prepared with polyethylene glycol (PEG) and inorganic salts and the ABMS with Triton X-114 was chosen as the phase-forming surfactant. Results indicate that peptide P34 partitions preferentially to PEG-rich phase and extraction with ammonium sulfate [(NH4)2SO4], yielding a 75% recovery of the antimicrobial activity, specific activity of 1,530 antimicrobial units per mg of protein, and purification fold of 2.48. Protein partition coefficient and partition coefficient for the biological activity with (NH4)2SO4 system were 0.48 and 64, respectively. Addition of sodium chloride did not affect recovery, but decreased protein amount in the PEG-rich phase, indicating a higher partition of biomolecules. ABMS did not yield good recovery of antimicrobial activity. Purification fold using PEG-(NH4)2SO4 and 1.0 mol l-1 sodium chloride was twice higher than that obtained by conventional protocol, indicating a successful utilization of ABS as a step for purification of peptide P34.


Assuntos
Sulfato de Amônio/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Extração Líquido-Líquido/métodos , Polietilenoglicóis/química , Micelas , Octoxinol , Sais/química , Tensoativos/química
4.
Arch Microbiol ; 194(3): 177-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21858429

RESUMO

Bacillus amyloliquefaciens LBM 5006 produces an antimicrobial factor active against Paenibacillus larvae, a major honeybee pathogen. The antagonistic effect and the mode of action of the antimicrobial factor were investigated. The antibacterial activity was produced starting at mid-logarithmic growth phase, reaching its maximum during the stationary phase. Exposure of cell suspensions of P. larvae to this antimicrobial resulted in loss of cell viability and reduction in optical density associated with cell lysis. Scanning electron microscopy showed damaged cell envelope and loss of protoplasmic material. The antimicrobial factor was stable for up to 80°C, but it was sensitive to proteinase K and trypsin. Mass spectrometry analysis indicates that the antimicrobial activity is associated with iturin-like peptides. The antimicrobial factor from B. amyloliquefaciens LBM 5006 showed a bactericidal effect against P. larvae cells and spores. This is the first report on iturin activity against P. larvae. This antimicrobial presents potential for use in the control of American foulbrood disease.


Assuntos
Antifúngicos/farmacologia , Bacillus/química , Abelhas/microbiologia , Paenibacillus/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Animais , Larva/crescimento & desenvolvimento , Larva/microbiologia , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Paenibacillus/ultraestrutura , Esporos Fúngicos/efeitos dos fármacos
5.
Probiotics Antimicrob Proteins ; 13(2): 468-483, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32829420

RESUMO

Lactic acid bacteria (LAB) are important microorganisms for the food industry due to their functional activity, as starters and potential probiotic strains. With that in mind, we explored the LAB diversity in raw buffalo milk, screening for novel potential probiotic strains. A total of 11 strains were identified by combination of MALDI-TOF and partial 16S rDNA sequencing and selected as potential probiotic candidates. Bacteria innocuity assessment was performed by determining antimicrobial susceptibility and the presence of virulence factors. Antagonism activity against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus was assessed, as well as milk proteolytic activity and exopolysaccharides production. Seven strains were identified as innocuous and two of them, Lactobacillus rhamnosus LB1.5 and Lactobacillus paracasei LB6.4 were selected for further probiotic potential analyses. Both strains demonstrated adhesion ability to Caco-2 cells, coaggregated with S. aureus and E. coli and maintained cell viability after gastrointestinal simulation in vitro, suggesting their probiotic potential. Furthermore, the transcriptional response of Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 to in vitro acid stress was assessed by RT-qPCR targeting seven genes related to adhesion, aggregation, stress tolerance, DNA repair and central metabolism. The association between the transcriptional responses and the maintenance of cell viability after gastrointestinal simulation highlights the genetic ability as probiotic of the two selected strains. Finally, we have concluded that Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 are important probiotic candidates to further in vivo studies.


Assuntos
Lactobacillales , Leite/microbiologia , Probióticos , Ácidos , Animais , Antibiose , Búfalos , Células CACO-2 , Escherichia coli , Humanos , Lactobacillales/genética , Staphylococcus aureus
6.
Dent Mater ; 35(8): 1155-1165, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128938

RESUMO

OBJECTIVE: The aim of this study was to formulate and evaluate experimental orthodontic adhesives with different concentrations of 1-n-butyl-3-methylimidazoilium bis(trifluoromethanesulfonyl)imide (BMIM.NTf2). METHODS: The experimental orthodontic adhesives were formulated with methacrylate monomers, photoinitiators and silica colloidal. The ionic liquid BMIM.NTf2 was synthesized and characterized. BMIM.NTf2 was added at 5 (G5%), 10 (G10%) and 15 (G15%) wt.%. One group contained no BMIM.NTf2 to function as control (GCtrl). The adhesives were evaluated for polymerization kinetics, degree of conversion (DC), Knoop hardness and softening in solvent, ultimate tensile strength (UTS), shear bond strength (SBS), thermogravimetric analysis (TGA), antibacterial activity and cytotoxicity. RESULTS: BMI.NTf2 showed the characteristic chemical peaks. The polymerization kinetics were different among the groups. G10% and G15% showed higher DC (p < 0.05). G5% and GCtrl had no differences for softening in solvent (p > 0.05). There were no differences for UTS (p > 0.05) and SBS (p > 0.05). TGA showed one different peak for G15%. All groups with BMIM.NTf2 showed antibacterial activity compared to GCtrl (p < 0.05) without cytotoxicity (p > 0.05). SIGNIFICANCE: To reduce biofilm formation around brackets and to prevent demineralization at susceptible sites, materials have been developed with antibacterial properties. In this study, a new experimental orthodontic adhesive was formulated with an imidazolium ionic liquid (BMIM.NTf2) as antibacterial agent. The incorporation of 5 wt.% of ionic liquid decreased biofilm formation without affecting the physico-chemical properties and cytotoxicity of an experimental orthodontic resin.


Assuntos
Colagem Dentária , Líquidos Iônicos , Braquetes Ortodônticos , Antibacterianos , Cimentos Dentários , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento
7.
Probiotics Antimicrob Proteins ; 5(1): 43-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26782604

RESUMO

Encapsulation may provide increased stability and antimicrobial efficiency to bacteriocins. In this work, the antilisterial peptide pediocin was encapsulated in nanovesicles prepared from partially purified soybean phosphatidylcholine. The maintenance of antimicrobial activity and properties of free and encapsulated pediocin was observed during 13 days at 4 °C, and after this period, the encapsulated pediocin retained 50 % its initial activity. The maintenance of the bioactive properties of free and encapsulated pediocin was observed against different species of Listeria, inhibiting Listeria monocytogenes, Listeria innocua and Listeria ivanovii. The size of vesicles containing pediocin was determined by dynamic light scattering as an average of 190 nm, with little change throughout the observation period. Polydispersity index values were around 0.201 and are considered satisfactory, indicating an adequate size distribution of liposomes. The efficiency of encapsulation was 80 %. Considering these results, the protocol used was appropriate for the encapsulation of this bacteriocin. Results demonstrate the production of stable nanoparticulate material. The maintenance of the properties of pediocin encapsulated in liposomes is fundamental to prospect the stability in different conditions of the food matrix.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa