RESUMO
BACKGROUND: miR-122 is an important host factor for hepatitis C virus (HCV) replication. The aim of this study was to assess the safety and tolerability, pharmacokinetics, and antiviral effect of a single dose of RG-101, a hepatocyte targeted N-acetylgalactosamine conjugated oligonucleotide that antagonises miR-122, in patients with chronic HCV infection with various genotypes. METHODS: In this randomised, double-blind, placebo-controlled, multicentre, phase 1B study, patients were randomly assigned to RG-101 or placebo (7:1). We enrolled men and postmenopausal or hysterectomised women (aged 18-65 years) with chronic HCV genotype 1, 3, or 4 infection diagnosed at least 24 weeks before screening who were either treatment naive to or relapsed after interferon-α based therapy. Patients with co-infection (hepatitis B virus or HIV infection), evidence of decompensated liver disease, or a history of hepatocellular carcinoma were excluded. Randomisation was done by an independent, unblinded, statistician using the SAS procedure Proc Plan. The first cohort received one subcutaneous injection of 2 mg/kg RG-101 or placebo; the second cohort received one subcutaneous injection of 4 mg/kg or placebo. Patients were followed up for 8 weeks (all patients) and up to 76 weeks (patients with no viral rebound and excluding those who were randomised to the placebo group) after randomisation. The primary objective was safety and tolerability of RG-101. This trial was registered with EudraCT, number 2013-002978-49. FINDINGS: Between June 4, 2014, and Oct 27, 2014, we enrolled 32 patients with chronic HCV genotype 1 (n=16), 3 (n=10), or 4 (n=6) infections. In the first cohort, 14 patients were randomly assigned to receive 2 mg/kg RG-101 and two patients were randomly assigned to receive placebo, and in the second cohort, 14 patients were randomly assigned to receive 4 mg/kg RG-101 and two patients were randomly assigned to receive placebo. Overall, 26 of the 28 patients dosed with RG-101 reported at least one treatment-related adverse event. At week 4, the median viral load reduction from baseline was 4·42 (IQR 3·23-5·00) and 5·07 (4·19-5·35) log10 IU/mL in patients dosed with 2 mg/kg RG-101 or 4 mg/kg RG-101. Three patients had undetectable HCV RNA levels 76 weeks after a single dose of RG-101. Viral rebound at or before week 12 was associated with the appearance of resistance associated substitutions in miR-122 binding regions in the 5' UTR of the HCV genome. INTERPRETATION: This study showed that one administration of 2 mg/kg or 4 mg/kg RG-101, a hepatocyte targeted N-acetylgalactosamine conjugated anti-miR-122 oligonucleotide, was well tolerated and resulted in substantial viral load reduction in all treated patients within 4 weeks, and sustained virological response in three patients for 76 weeks. FUNDING: Regulus Therapeutics, Inc.
Assuntos
Hepatite C Crônica/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , MicroRNAs/uso terapêutico , Acetilgalactosamina , Estudos de Coortes , Método Duplo-Cego , Feminino , Humanos , Injeções Subcutâneas , Masculino , MicroRNAs/farmacocinética , Pessoa de Meia-Idade , Oligonucleotídeos , Carga Viral/efeitos dos fármacosRESUMO
MicroRNA-122 is an important host factor for the hepatitis C virus (HCV). Treatment with RG-101, an N-acetylgalactosamine-conjugated anti-microRNA-122 oligonucleotide, resulted in a significant viral load reduction in patients with chronic HCV infection. Here, we analyzed the effects of RG-101 therapy on antiviral immunity. Thirty-two chronic HCV patients infected with HCV genotypes 1, 3, and 4 received a single subcutaneous administration of RG-101 at 2 mg/kg (n = 14) or 4 mg/kg (n = 14) or received a placebo (n = 2/dosing group). Plasma and peripheral blood mononuclear cells were collected at multiple time points, and comprehensive immunological analyses were performed. Following RG-101 administration, HCV RNA declined in all patients (mean decline at week 2, 3.27 log10 IU/mL). At week 8 HCV RNA was undetectable in 15/28 patients. Plasma interferon-γ-induced protein 10 (IP-10) levels declined significantly upon dosing with RG-101. Furthermore, the frequency of natural killer (NK) cells increased, the proportion of NK cells expressing activating receptors normalized, and NK cell interferon-γ production decreased after RG-101 dosing. Functional HCV-specific interferon-γ T-cell responses did not significantly change in patients who had undetectable HCV RNA levels by week 8 post-RG-101 injection. No increase in the magnitude of HCV-specific T-cell responses was observed at later time points, including 3 patients who were HCV RNA-negative 76 weeks postdosing. CONCLUSION: Dosing with RG-101 is associated with a restoration of NK-cell proportions and a decrease of NK cells expressing activation receptors; however, the magnitude and functionality of ex vivo HCV-specific T-cell responses did not increase following RG-101 injection, suggesting that NK cells, but not HCV adaptive immunity, may contribute to HCV viral control following RG-101 therapy. (Hepatology 2017;66:57-68).
Assuntos
Hepatite C Crônica/tratamento farmacológico , Células Matadoras Naturais/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , ELISPOT/métodos , Feminino , Citometria de Fluxo , Seguimentos , Hepatite C Crônica/diagnóstico , Humanos , Injeções Subcutâneas , Células Matadoras Naturais/imunologia , Masculino , MicroRNAs/administração & dosagem , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Países Baixos , Fenótipo , Linfócitos T/imunologia , Resultado do TratamentoRESUMO
BACKGROUND&AIMS: With the introduction of DAA's, the majority of treated chronic hepatitis C patients (CHC) achieve a viral cure. The exact mechanisms by which the virus is cleared after successful therapy, is still unknown. The aim was to assess the role of the immune system and miRNA levels in acquiring a sustained virological response after DAA treatment in CHC patients with and without prior RG-101 (anti-miR-122) dosing. METHODS: In this multicenter, investigator-initiated study, 29 patients with hepatitis C virus (HCV) genotype 1 (n = 11), 3 (n = 17), or 4 (n = 1) infection were treated with sofosbuvir and daclatasvir ± ribavirin. 18 patients were previously treated with RG-101. IP-10 levels were measured by ELISA. Ex vivo HCV-specific T cell responses were quantified in IFN-γ-ELISpot assays. Plasma levels of miR-122 were measured by qPCR. RESULTS: All patients had an SVR12. IP-10 levels rapidly declined during treatment, but were still elevated 24 weeks after treatment as compared to healthy controls (median 53.82 and 39.4 pg/mL, p = 0.02). Functional IFN-γ HCV-specific T cell responses did not change by week 12 of follow-up (77.5 versus 125 SFU/106 PBMC, p = 0.46). At follow-up week 12, there was no difference in plasma miR-122 levels between healthy controls and patients with and without prior RG-101 dosing. CONCLUSIONS: Our data shows that successful treatment of CHC patients with and without prior RG-101 dosing results in reduction of broad immune activation, and normalisation of miR-122 levels (EudraCT: 2014-002808-25). TRIAL REGISTRATION: EudraCT: 2014-002808-25.
Assuntos
Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , MicroRNAs/antagonistas & inibidores , Adulto , Idoso , Antivirais/administração & dosagem , Carbamatos , Quimiocina CXCL10/sangue , Quimioterapia Combinada , Feminino , Genótipo , Humanos , Imidazóis/uso terapêutico , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Pirrolidinas , RNA Viral/sangue , Ribavirina/uso terapêutico , Sofosbuvir/uso terapêutico , Valina/análogos & derivados , Adulto JovemRESUMO
The multidrug resistance protein (MRP) family consists of several members and, for some of these transporter proteins, distinct roles in multidrug resistance and normal tissue functions have been well established (MRP1 and MRP2) or are still under investigation (MRP3). MRP3 expression studies in human tissues have been largely restricted to the mRNA level. In this report we extended these studies and further explored MRP3 expression at the protein level. Western blot and immunohistochemistry with two MRP3-specific monoclonal antibodies, M(3)II-9 and M(3)II-21, showed MRP3 protein to be present in adrenal gland, and kidney and in tissues of the intestinal tract: colon, pancreas, gallbladder, and liver. In epithelia, MRP3 was found to be located at the basolateral sides of cell membranes. In normal liver, MRP3 was detected at lower levels than anticipated from the mRNA data and was found present mainly in the bile ducts. In livers from patients with various forms of cholestasis, MRP3 levels were frequently increased in the proliferative cholangiocytes, with sometimes additional staining of the basolateral membranes of the hepatocytes. This was especially evident in patients with type 3 progressive familial intrahepatic cholestasis. The present results support the view that MRP3 plays a role in the cholehepatic and enterohepatic circulation of bile and in protection within the biliary tree and tissues along the bile circulation route against toxic bile constituents. The possible functional roles for MRP3 in the adrenal gland and in the kidney remain as yet unknown. In a panel of 34 tumor samples of various histogenetic origins, distinct amounts of MRP3 were detected in a limited number of cases, including lung, ovarian, and pancreatic cancers. These findings may be of potential clinical relevance when considering the drug treatment regimens for these tumor types.