Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 26(23-24): 1226-1242, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32282291

RESUMO

Bone tissue engineering strategies have been developed to address the limitations of the current gold standard treatment options for bone-related disorders. These systems consist of an engineered scaffold that mimics the extracellular matrix and provides an architecture to guide the natural bone regeneration process, and incorporated growth factors that enhance cell recruitment and ingress into the scaffold and promote the osteogenic differentiation of stem cells and angiogenesis. In particular, the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) has been widely studied as a potent agent to improve bone regeneration. A key challenge in growth factor delivery is that the growth factors must reach their target sites without losing bioactivity and remain in the location for an extended period to effectively aid in the formation of new bone. Protein incorporation into nanoparticles can both protect protein bioactivity and enable its sustained release. In this study, a poly(methyl methacrylate-co-methacrylic acid) nanoparticle-based system was synthesized incorporating a custom poly(ethylene glycol) dimethacrylate crosslinker. It was demonstrated that the nanoparticle degradation rate can be controlled by tuning the number of hydrolytically degradable ester units along the crosslinker. We also showed that the nanoparticles had high affinity for a model protein for BMP-2, and optimal conditions for maximum protein loading efficiency were elucidated. Ultimately, the proposed system and its high degree of tunability can be applied to a wide range of growth factors and tissue engineering applications. Impact Statement In this study, we developed a novel method of synthesizing nanoparticles with tunable degradation rates through the incorporation of a custom synthesized, hydrolytically degradable crosslinker. In addition, we demonstrated the affinity of the synthesized nanoparticles for a model protein for bone morphogenetic protein 2 (BMP-2). The tunability of these nanoparticles can be used to develop complex tissue engineering systems, for example, for the delivery of multiple growth factors involved at different stages of the bone regeneration process.


Assuntos
Regeneração Óssea , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Nanopartículas , Osteogênese , Proteína Morfogenética Óssea 2 , Humanos , Metacrilatos , Polimetil Metacrilato , Alicerces Teciduais
2.
J Biomed Mater Res A ; 108(5): 1122-1135, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31971334

RESUMO

To guide the natural bone regeneration process, bone tissue engineering strategies rely on the development of a scaffold architecture that mimics the extracellular matrix and incorporates important extracellular signaling molecules, which promote fracture healing and bone formation pathways. Incorporation of growth factors into particles embedded within the scaffold can offer both protection of protein bioactivity and a sustained release profile. In this work, a novel method to immobilize carrier nanoparticles within scaffold pores is proposed. A biodegradable, osteoconductive, porous chitosan scaffold was fabricated via the "freeze-drying method," leading to scaffolds with a storage modulus of 8.5 kPa and 300 µm pores, in line with existing bone scaffold properties. Next, poly(methyl methacrylate-co-methacrylic acid) nanoparticles were synthesized and immobilized to the scaffold via carbodiimide-crosslinker chemistry. A fluorescent imaging study confirmed that the conventional methods of protein and nanocarrier incorporation into scaffolds can lead to over 60% diffusion out of the scaffold within the first 5 min of implantation, and total disappearance within 4 weeks. The novel method of nanocarrier immobilization to the scaffold backbone via carbodiimide-crosslinker chemistry allows full retention of particles for up to 4 weeks within the scaffold bulk, with no negative effects on the viability and proliferation of human umbilical vein endothelial cells.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Preparações de Ação Retardada/química , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Alicerces Teciduais/química , Implantes Absorvíveis , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Osteogênese/efeitos dos fármacos , Porosidade , Engenharia Tecidual
3.
Regen Biomater ; 5(4): 197-211, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30094059

RESUMO

In recent years, bone tissue engineering has emerged as a promising solution to the limitations of current gold standard treatment options for bone related-disorders such as bone grafts. Bone tissue engineering provides a scaffold design that mimics the extracellular matrix, providing an architecture that guides the natural bone regeneration process. During this period, a new generation of bone tissue engineering scaffolds has been designed and characterized that explores the incorporation of signaling molecules in order to enhance cell recruitment and ingress into the scaffold, as well as osteogenic differentiation and angiogenesis, each of which is crucial to successful bone regeneration. Here, we outline and critically analyze key characteristics of successful bone tissue engineering scaffolds. We also explore candidate materials used to fabricate these scaffolds. Different growth factors involved in the highly coordinated process of bone repair are discussed, and the key requirements of a growth factor delivery system are described. Finally, we concentrate on an analysis of scaffold-based growth factor delivery strategies found in the recent literature. In particular, the incorporation of two-phase systems consisting of growth factor-loaded nanoparticles embedded into scaffolds shows great promise, both by providing sustained release over a therapeutically relevant timeframe and the potential to sequentially deliver multiple growth factors.

4.
Sci Rep ; 8(1): 5995, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662083

RESUMO

During embryonic development, most organs are in a state of mechanical compression because they grow in a confined and limited amount of space within the embryo's body; the early gut is an exception because it physiologically herniates out of the coelom. We demonstrate here that physiological hernia is caused by a tensile force transmitted by the vitelline duct on the early gut loop at its attachment point at the umbilicus. We quantify this tensile force and show that applying tension for 48 h induces stress-dependent elongational growth of the embryonic gut in culture, with an average 90% length increase (max: 200%), 65% volume increase (max: 160%), 50% dry mass increase (max: 100%), and 165% cell number increase (max: 300%); this mechanical cue is required for organ growth as guts not subject to tension do not grow. We demonstrate that growth results from increased cell proliferation when tension is applied. These results outline the essential role played by mechanical forces in shaping and driving the proliferation of embryonic organs.


Assuntos
Trato Gastrointestinal/embriologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Proliferação de Células , Embrião de Galinha , Motilidade Gastrointestinal , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/fisiologia , Técnicas de Cultura de Órgãos , Tamanho do Órgão , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa