Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Transgenic Res ; 29(1): 165-170, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31912406

RESUMO

An intended generalized ban on the "introduction and use of transgenic seeds" has been announced by the Mexican government, which, unlike the other agricultural programs under this administration, lacks a budget and rules of operation. In this policy brief we consider scenarios of implementing such an intended ban, de-regulating the use of genetically modified crops, or an intermediate scenario under the existing biosafety regulations. We recommend maintaining the status quo given its potential contributions to food and environmental security, in addition to a better economic outlook. However, a greater impulse needs to be given by the federal government to foment the domestic development of GM crops that are pertinent for Mexican agri-food needs, in addition to funding the development and implementation of various agro-ecological practices that increase biodiversity in food production units.


Assuntos
Agricultura/legislação & jurisprudência , Biotecnologia/legislação & jurisprudência , Produtos Agrícolas/genética , Inocuidade dos Alimentos/métodos , Alimentos Geneticamente Modificados/normas , Plantas Geneticamente Modificadas/genética , Sementes/genética , Humanos , México , Medição de Risco , Sementes/crescimento & desenvolvimento
2.
Physiol Plant ; 168(3): 547-562, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30136347

RESUMO

Climate change is expected to increase the frequency of extreme climatic events, yet few studies have addressed the capacity of plant species to deal with such events. Species that are widespread are predicted to be highly plastic and able to acclimate to highly changing conditions. To study the plasticity in physiological responses of the widely distributed epiphyte Tillandsia utriculata, we transplanted individuals from a coastal scrub and broadleaf evergreen forest to a similar coastal scrub site and forest. After a 45-day acclimation, the plants were moved to a semi-controlled greenhouse at each site, and then subjected to a 20-day drought. Physiological variables were measured during the acclimation and the drought. The individuals of scrub and forest populations had similar relative water content and carbon assimilation in the contrasting conditions of the two transplantation sites despite the high discrepancy between the environments at their original site. Electron transport rates were higher in individuals from the scrub population. Electron transport rates were also higher than estimated from carbon assimilation, suggesting that photorespiration was present. The individuals of the coastal scrub population had a higher capacity to dissipate excess energy this way. The relative distance index of plasticity was high overall, indicating that some traits are highly plastic (titratable acidity, carbon assimilation) in order to maintain the stability of others (maximum quantum yield Fv /Fm and relative water content). We conclude that T. utriculata is a highly plastic species with a high capacity to tolerate extreme environmental changes over a short time.


Assuntos
Mudança Climática , Secas , Estresse Fisiológico , Tillandsia/fisiologia , Carbono/metabolismo , Fotossíntese , Água
3.
Bull Environ Contam Toxicol ; 102(1): 19-24, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30426141

RESUMO

Environmental impacts of mining activities are well known, particularly on-site degradation, but long term effects are less known. Mercury content from vegetation samples from a mine dump and surrounding forests was quantified for understanding the fate of this element in the local the environment. The study area, Tlalpujahua, Michoacán, México, has a mining history going back more than 400 years. Including gold and silver extraction by means of mercury amalgamation for 352 years (1554-1906). Mercury was present in all sampled materials. The highest values correspond to wood samples from the mine dump (13.84 ± 3.88 ppm), while wood samples from adjacent forests had 4.3 ± 2.4 ppm, almost twice as much as coniferous needles, shrub leaves and corn seeds (2.2 ± 0.34 ppm). The highest concentration was found for J. deppeana wood (16.05 ± 2.3 ppm). The capacity of accumulating mercury by Juniperus trees when growing on the mine dumps suggests that this species has a potential to be used for biosequestration purposes.


Assuntos
Poluentes Ambientais/análise , Juniperus/química , Mercúrio/análise , Mineração , Monitoramento Ambiental , Ouro , México , Pinus/química , Prata , Árvores/química , Madeira/química , Zea mays/química
4.
J Plant Res ; 129(5): 863-872, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27282994

RESUMO

Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak forest, reaching 1.3 ± 0.2 % (dry mass). The δ(15)N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2 ‰ in the city, values found in sites exposed to industrial and vehicular activities. The δ(15)N for plant from the oak forest amounted to -3.1 ± 0.3 ‰, which is similar to values measured from sites with low industrial activities. Some orchids such as Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed between 2003 and 2012. The C:N ratio of the ten most recent pseudobulbs from the oak forest, as well as that of the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 6.5, while it was lower for the two most recent pseudobulbs in the city. The δ(15)N values of pseudobulbs from the oak forest averaged ‒4.4 ± 0.1 ‰ for the entire series. The δ(15)N ranged from 0.1 ± 1.6 ‰ for the oldest pseudobulb to 4.7 ± 0.2 ‰ for the pseudobulb formed in the city from 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that rates of nitrogen deposition were higher in the city than in the forest. The δ(15)N values of series of pseudobulbs showed that it is possible to track nitrogen deposition over multiple years.


Assuntos
Cidades , Espécies em Perigo de Extinção , Florestas , Nitrogênio/metabolismo , Orchidaceae/metabolismo , Quercus/fisiologia , Análise de Variância , Atmosfera , Carbono , México , Isótopos de Nitrogênio
5.
Plants (Basel) ; 10(5)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065049

RESUMO

Biomonitoring of atmospheric pollution is an increasingly accepted practice. However, most existing biomonitors are usually epiphytic species from mesic environments. This work assessed the suitability of buffelgrass (Cenchrus ciliaris), an invasive C4 grass in northwestern Mexico, as a biomonitor, by means of the spatial distribution of the carbon and nitrogen content and isotopic signatures for grass samples collected from urban, agricultural, and natural areas throughout the state of Sonora. We found the highest tissue carbon content of 45.6% (on a dry weight basis) and highest nitrogen content of 3.31% for buffelgrass from the Yaqui Valley. We also found the lowest δ13C of -15.9‰, and the highest δ15N of 16.7‰ in the same region. In contrast, the lowest carbon and nitrogen content of 39.4 and 1.49% were found for Bahía de Kino and Río Sonora mountains, respectively. The lowest δ15N of 2.18‰ and the highest δ13C of -13.7‰ were measured for two remote locations. These results show the influence that pollutant emissions, including agriculture and transportation, have on elemental and isotopic composition of vegetation. Buffelgrass is most adequate for tracking carbon and nitrogen emissions in arid environments and for determining alterations on nitrogen soil reactions, as a first approximation for saturation.

6.
Conserv Physiol ; 9(1): coab009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859825

RESUMO

Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human-induced environmental change; (iii) human-wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions.

7.
PeerJ ; 8: e9283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523817

RESUMO

Atmospheric pollution has become a serious threat for human health and the environment. However, the deployment, operation and maintenance of monitoring networks can represent a high cost for local governments. In certain locations, the use of naturally occurring plants for monitoring pollution can be a useful supplement of existing monitoring networks, and even provide information when other types of monitoring are lacking. In this work, we (i) determined the tissue carbon content and the δ13C values for the epiphytic CAM bromeliad Tillandsia recurvata and the relationship of both parameters with the existing CO concentrations in the Valley of Mexico basin and (ii) mapped the spatial distribution of such elemental and isotopic composition for this plant within the basin, in order to assess its potential as an atmospheric biomonitor of carbon monoxide, a pollutant with important repercussions on public health. The CO concentrations in the basin ranged from 0.41 ppm at rural locations to 0.81 ppm at urban sites. The carbon content of T. recurvata, which averaged 42.9 ± 0.34% (dry weight), was not influenced by the surrounding CO concentration. In contrast, the δ13C depended on the sites where the plants were collected. For example, the values were -13.2‰ in rural areas and as low as -17.5‰ in an urban site. Indeed, the isotopic values had a positive linear relationship with the atmospheric CO concentrations. Given the close relationship observed between the isotopic composition of T. recurvata with the CO concentrations in the Valley of Mexico, the δ13C values can be useful for the detection of atmospheric carbonaceous emissions.

8.
Conserv Physiol ; 8(1): coaa016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274063

RESUMO

Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.

9.
Isotopes Environ Health Stud ; 55(6): 526-531, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31597451

RESUMO

Drying protocols might alter the isotopic signatures of plant samples given that high temperatures can volatilize various organic compounds or delay the halting of physiological processes at lower drying temperatures. We thus evaluated the effect of four drying protocols on the carbon and nitrogen isotopic signatures for 23 species of plants. In particular, leaves were either freeze-dried, placed in a herbarium drying stove (ca. 50°C), in a gravity convection oven (80°C), or microwaved (900 W) in 2-minute pulses, until constant weight. For each species, neither treatment led to significantly different δ13C values, which ranged from -31.7 to -12.4‰. The δ15N values of 21 of the species considered were not affected by the drying protocols, ranging from -11.6 to -8.8‰. For Tillandsia makoyana, significant differences were observed between the freeze dried and the microwaved samples and between the freeze dried samples and those dried at 50°C for Macroptilium gibbosifolium.


Assuntos
Isótopos de Carbono/análise , Dessecação/métodos , Monitoramento Ambiental/métodos , Liofilização , Isótopos de Nitrogênio/análise , Folhas de Planta/química , Fabaceae/química , Temperatura Alta , Inquéritos e Questionários , Volatilização
10.
Sci Rep ; 8(1): 13569, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206292

RESUMO

An increase of nitrogen deposition resulting from human activities is not only a major threat for global biodiversity, but also for human health, especially in highly populated regions. It is thus important and in some instances legally mandated to monitor reactive nitrogen species in the atmosphere. The utilization of widely distributed biological species suitable for biomonitoring may be a good alternative. We assessed the suitability of an ensemble of atmospheric biomonitors of nitrogen deposition by means of an extensive sampling of a lichen, two mosses, and a bromeliad throughout the Valley of Mexico, whose population reaches 30 million, and subsequent measurements of nitrogen metabolism parameters. In all cases we found significant responses of nitrogen content, C:N ratio and the δ15N to season and site. In turn, the δ15N for the mosses responded linearly to the wet deposition. Also, the nitrogen content (R2 = 0.7), the C:N ratio (R2 = 0.6), and δ15N (R2 = 0.5) for the bromeliad had a linear response to NOx. However, the bromeliad was not found in sites with NOx concentrations exceeding 80 ppb, apparently of as a consequence of excess nitrogen. These biomonitors can be utilized in tandem to determine the status of atmospheric nitrogenous pollution in regions without monitoring networks for avoiding health problems for ecosystems and humans.


Assuntos
Poluentes Atmosféricos/análise , Bromelia/química , Briófitas/química , Monitoramento Ambiental/métodos , Líquens/química , Nitrogênio/análise , Poluentes Atmosféricos/metabolismo , Atmosfera , Bromelia/metabolismo , Briófitas/metabolismo , Humanos , Líquens/metabolismo , México , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Isótopos de Nitrogênio , Espécies Reativas de Nitrogênio/análise
11.
Conserv Physiol ; 6(1): coy011, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564134

RESUMO

Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha-1 year-1, well above the threshold for physiological damage of 12-20 kg of N ha-1 year-1, depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha-1 year-1. The isotopic signature, δ15N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (-11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments or passive monitoring is not feasible or can be complementary.

12.
Trends Plant Sci ; 9(2): 65-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15102371

RESUMO

Although nectar is crucial for most pollinators, its evolutionary origin has received scant attention. Nectar is derived from the phloem solution. Both have high sugar concentrations (usually 10-30% solutes by fresh mass); the main solute in the phloem is sucrose, whereas nectar can also contain considerable amounts of fructose and glucose. The phloem, not the xylem, is the supplier of water to flowers and certain other organs. Therefore, a 'leaky phloem' hypothesis for the origin of nectar is presented based on the elevated hydrostatic pressure that can occur within the phloem and the structural weakness of developing phloem tissues. A 'sugar excretion' hypothesis is also presented that considers the solute accumulation resulting from the relatively high transpiration rates of flowers.


Assuntos
Evolução Biológica , Carboidratos/química , Carboidratos/fisiologia , Flores/fisiologia , Pólen/fisiologia , Flores/anatomia & histologia , Frutose/metabolismo , Glucose/metabolismo , Fenômenos Fisiológicos Vegetais , Transpiração Vegetal/fisiologia , Sacarose/metabolismo , Água/metabolismo
13.
F1000Res ; 5: 2814, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28105317

RESUMO

Mexico is hosting the 13th Conference of the Parts (COP-13) on the Convention on Biological Diversity. Participants will have another opportunity to "integrate biodiversity for wellbeing." Considering that food production is a major driver for the loss of biological diversity, despite the fact that ample genetic reservoirs are crucial for the persistence of agriculture in a changing world, food can be a conduit for bringing biodiversity into people's minds and government agendas. If this generation is going to "live in harmony with nature," as the Aichi Biodiversity Targets indicate, such an integration needs to be developed between the agricultural and environmental sectors throughout the world, especially as an increasingly urban civilization severs its cultural connections to food origin.

14.
Funct Plant Biol ; 43(5): 461-467, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-32480476

RESUMO

Movement of species outside their range of distribution could be a strategy for conservation purposes, but before implementation, it is necessary to evaluate plants responses to the conditions that they will experience in new locations. We evaluated the effect of potassium fertilisation to enhance the frost tolerance of young individuals of Albizia plurijuga (Standley) Britton & Rose, Cedrela dugesii S.Watson and Ceiba aesculifolia (Kunth) Britten & Baker f., which are all common species from tropical dry forests in Mexico. Plants were propagated in a shade-house and fertilised during 9 months with different concentrations of potassium (39, 189 and 528ppm). In frost simulations, plants were exposed to temperatures below 0°C during different time periods and frost injury was assessed by electrolyte leakage of leaf discs from young and old leaves. We observed that potassium fertilisation enhanced frost tolerance by reducing electrolyte leakage mainly in young leaves. We recorded plant re-sprouting ability after exposure to subzero temperatures over 45 days, finding notable differences among species: all individuals of C. dugesii sprouted, followed by some of A. plurijuga and finally just one of C. aesculifolia. Also, high potassium levels increased re-sprouting response. These species have a low frost tolerance, but potassium fertilisation seemed to be effective to enhance it for young individuals, increasing the probability of survival if plants are moved to colder areas than current habitats.

16.
PeerJ ; 3: e1021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131375

RESUMO

Potential ecophysiological responses to nitrogen deposition, which is considered to be one of the leading causes for global biodiversity loss, were studied for the endangered endemic Mexican epiphytic orchid, Laelia speciosa, via a shadehouse dose-response experiment (doses were 2.5, 5, 10, 20, 40, and 80 kg N ha(-1) yr(-1)) in order to assess the potential risk facing this orchid given impending scenarios of nitrogen deposition. Lower doses of nitrogen of up to 20 kg N ha yr(-1), the dose that led to optimal plant performance, acted as fertilizer. For instance, the production of leaves and pseudobulbs were respectively 35% and 36% greater for plants receiving 20 kg N ha yr(-1) than under any other dose. Also, the chlorophyll content and quantum yield peaked at 0.66 ± 0.03 g m(-2) and 0.85 ± 0.01, respectively, for plants growing under the optimum dose. In contrast, toxic effects were observed at the higher doses of 40 and 80 kg N ha yr(-1). The δ (13)C for leaves averaged -14.7 ± 0.2‰ regardless of the nitrogen dose. In turn, δ (15)N decreased as the nitrogen dose increased from 0.9 ± 0.1‰ under 2.5 kg N ha(-1)yr(-1) to -3.1 ± 0.2‰ under 80 kg N ha(-1)yr(-1), indicating that orchids preferentially assimilate NH4 (+) rather than NO3 (-) of the solution under higher doses of nitrogen. Laelia speciosa showed a clear response to inputs of nitrogen, thus, increasing rates of atmospheric nitrogen deposition can pose an important threat for this species.

17.
New Phytol ; 157(2): 271-279, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33873630

RESUMO

• Opuntia ficus-indica , a cactus widely cultivated for fruits and forage/fodder, has shoots composed of flattened stem segments (cladodes) that are relatively sensitive to freezing temperatures below -6°C but extremely tolerant of high temperatures up to 65°C. Based on the uptake of the vital strain neutral red, fruits and roots were damaged by 60 min below -7°C or above 55°C. • Young (6 wk old) and mature (1-yr-old) cladodes had 1.2°C greater low-temperature tolerance at day/night air temperatures of 20 : 10°C compared with 30 : 20°C and 2.8°C lower high-temperature tolerance. Fruits and roots (both 6 wk old) showed no such low-temperature acclimation; roots had high-temperature acclimation similar to that of cladodes, but fruits showed no high-temperature acclimation. • High-temperature tolerance did not change with age for cladodes and fruits up to 10 wk old nor did low-temperature tolerance for cladodes, but fruit low-temperature tolerance decreased by 2.6°C from 4.5 to 10 wk of age, a time when sugars, which can act as cryoprotectants, were increasing. • Cladodes showed 2.0°C greater tolerance of low temperatures with age up to 10 yr and 6.5°C greater high-temperature tolerance, which helps prevent the death of plants, especially during episodic freezing events.

18.
J Exp Bot ; 55(397): 719-29, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14966221

RESUMO

Growth, gas exchange rates, and carbohydrate content were studied for developing fruits of the cultivated cactus Opuntia ficus-indica (L.) Miller, including effects of drought and exogenous gibberellic acid (GA3). Fruit development required 110 d from the time of bud differentiation to ripening at 80 d after anthesis, when the fruit mass averaged 67 g. Stomatal conductance and net CO2 uptake rates for fruits were higher during the night; they were maximal at 7 d before anthesis and decreased as development progressed. Fruits undergoing drought, imposed by detaching terminal stems bearing fruits, were 50% smaller than the control at 80 d after anthesis and did not ripen. Fruits injected with 2 ml of 500 ppm GA3 were 30% smaller than the control at 80 d after anthesis; they contained a large proportion of aborted seeds that produced a weak sink signal for dry mass accumulation. Gas exchange was higher at 21 d after anthesis for fruits treated with GA3. Total soluble sugars represented 40% of the fruit's dry mass until 45 d after anthesis, when the sugar content rapidly increased, reaching 90% at 73 d after anthesis. Such an increase was not observed for fruits treated with GA3, and the sugar content for fruits undergoing drought remained low throughout development. Starch content increased for developing fruits of O. ficus-indica until 14 d after anthesis and, except for the fruits undergoing drought, decreased thereafter. Fruit development for O. ficus-indica is apparently regulated by water availability as well as hormonal signals originating both within and outside the fruit.


Assuntos
Carbono/metabolismo , Giberelinas/farmacologia , Opuntia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Água/metabolismo , Desastres , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Cinética , Opuntia/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa