Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
EMBO J ; 43(11): 2264-2290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38671253

RESUMO

Transient receptor potential (TRP) ion channels are involved in the surveillance or regulation of the acid-base balance. Here, we demonstrate that weak carbonic acids, including acetic acid, lactic acid, and CO2 activate and sensitize TRPV2 through a mechanism requiring permeation through the cell membrane. TRPV2 channels in cell-free inside-out patches maintain weak acid-sensitivity, but protons applied on either side of the membrane do not induce channel activation or sensitization. The involvement of proton modulation sites for weak acid-sensitivity was supported by the identification of titratable extracellular (Glu495, Glu561) and intracellular (His521) residues on a cryo-EM structure of rat TRPV2 (rTRPV2) treated with acetic acid. Molecular dynamics simulations as well as patch clamp experiments on mutant rTRPV2 constructs confirmed that these residues are critical for weak acid-sensitivity. We also demonstrate that the pore residue Glu609 dictates an inhibition of weak acid-induced currents by extracellular calcium. Finally, TRPV2-expression in HEK293 cells is associated with an increased weak acid-induced cytotoxicity. Together, our data provide new insights into weak acids as endogenous modulators of TRPV2.


Assuntos
Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/química , Humanos , Células HEK293 , Animais , Ratos , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Cálcio/metabolismo , Técnicas de Patch-Clamp , Ácidos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(48): 24359-24365, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31719194

RESUMO

Thermosensitive transient receptor potential (TRP) ion channels detect changes in ambient temperature to regulate body temperature and temperature-dependent cellular activity. Rodent orthologs of TRP vanilloid 2 (TRPV2) are activated by nonphysiological heat exceeding 50 °C, and human TRPV2 is heat-insensitive. TRPV2 is required for phagocytic activity of macrophages which are rarely exposed to excessive heat, but what activates TRPV2 in vivo remains elusive. Here we describe the molecular mechanism of an oxidation-induced temperature-dependent gating of TRPV2. While high concentrations of H2O2 induce a modest sensitization of heat-induced inward currents, the oxidant chloramine-T (ChT), ultraviolet A light, and photosensitizing agents producing reactive oxygen species (ROS) activate and sensitize TRPV2. This oxidation-induced activation also occurs in excised inside-out membrane patches, indicating a direct effect on TRPV2. The reducing agent dithiothreitol (DTT) in combination with methionine sulfoxide reductase partially reverses ChT-induced sensitization, and the substitution of the methionine (M) residues M528 and M607 to isoleucine almost abolishes oxidation-induced gating of rat TRPV2. Mass spectrometry on purified rat TRPV2 protein confirms oxidation of these residues. Finally, macrophages generate TRPV2-like heat-induced inward currents upon oxidation and exhibit reduced phagocytosis when exposed to the TRP channel inhibitor ruthenium red (RR) or to DTT. In summary, our data reveal a methionine-dependent redox sensitivity of TRPV2 which may be an important endogenous mechanism for regulation of TRPV2 activity and account for its pivotal role for phagocytosis in macrophages.


Assuntos
Metionina/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cloraminas/química , Escherichia coli/genética , Temperatura Alta , Humanos , Peróxido de Hidrogênio/química , Macrófagos , Metionina/química , Mutação , Oxidantes/química , Oxirredução , Técnicas de Patch-Clamp , Fagocitose , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Compostos de Tosil/química
3.
J Biol Chem ; 293(22): 8626-8637, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29674316

RESUMO

ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties.


Assuntos
Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Ativação do Canal Iônico/fisiologia , Rim/metabolismo , Mutação , Transporte Biológico , Células Cultivadas , Canais de Cloreto/genética , Células HEK293 , Humanos , Domínios Proteicos
4.
J Biol Chem ; 288(28): 20280-92, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23709225

RESUMO

The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.


Assuntos
Canais de Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prótons , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sítios de Ligação/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Capsaicina/farmacologia , Células Cultivadas , Cimenos , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ionomicina/farmacologia , Macaca mulatta , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoterpenos/farmacologia , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Potássio/farmacologia , Ratos , Especificidade da Espécie , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/genética
5.
J Biol Chem ; 287(34): 28291-306, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22740698

RESUMO

Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry.


Assuntos
Canais de Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Aldeído Pirúvico/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Potenciais de Ação , Animais , Sítios de Ligação , Canais de Cálcio/genética , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Neuralgia/dietoterapia , Neuralgia/genética , Neuralgia/patologia , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/metabolismo , Nociceptores/patologia , Ratos , Canal de Cátion TRPA1 , Canais de Cátion TRPC/genética , Canais de Potencial de Receptor Transitório/genética
6.
Anesth Analg ; 117(5): 1101-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24029851

RESUMO

BACKGROUND: Systemic administration of lipid emulsions is an established treatment for local anesthetic intoxication. However, it is unclear by which mechanisms lipids achieve this function. The high cardiac toxicity of the lipophilic local anesthetic bupivacaine probably results from a long-lasting inhibition of the cardiac Na channel Nav1.5. In this study, we sought to determine whether lipid emulsions functionally interact with Nav1.5 or counteract inhibition by bupivacaine. METHODS: Human embryonic kidney cells expressing human Nav1.5 were investigated by whole-cell patch clamp. The effects of Intralipid® and Lipofundin® were explored on functional properties and on bupivacaine-induced inhibition. RESULTS: Intralipid and Lipofundin did not affect the voltage dependency of activation, but induced a small hyperpolarizing shift of the steady-state fast inactivation and impaired the recovery from fast inactivation. Lipofundin, but not Intralipid, induced a concentration-dependent but voltage-independent tonic block (42% ± 4% by 3% Lipofundin). The half-maximal inhibitory concentration (IC50) values for tonic block by bupivacaine (50 ± 4 µM) were significantly increased when lipids were coapplied (5% Intralipid: 196 ± 22 µM and 5% Lipofundin: 103 ± 8 µM). Use-dependent block by bupivacaine at 10 Hz was also reduced by both lipid emulsions. Moreover, the recovery of inactivated channels from bupivacaine-induced block was faster in the presence of lipids. CONCLUSIONS: Our data indicate that lipid emulsions reduce rather than increase availability of Nav1.5. However, both Intralipid and Lipofundin partly relieve Nav1.5 from block by bupivacaine. These effects are likely to involve not only a direct interaction of lipids with Nav1.5 but also the ability of lipid emulsions to absorb bupivacaine and thus reduce its effective concentration.


Assuntos
Anestésicos Locais/efeitos adversos , Anestésicos Locais/farmacologia , Bupivacaína/efeitos adversos , Emulsões Gordurosas Intravenosas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Fosfolipídeos/farmacologia , Sorbitol/farmacologia , Óleo de Soja/farmacologia , Absorção , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Eletrofisiologia , Emulsões/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Rim/efeitos dos fármacos , Lipídeos/química , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Sódio/farmacologia
7.
BMC Neurol ; 12: 104, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23006332

RESUMO

BACKGROUND: The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of "startle disease" predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia.Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function.The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol) at four glycine receptor mutations. METHODS: Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. RESULTS: 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM) and in a micromolar concentration range at the mutations (1.3 ± 0.6 µM, 0.1 ± 0.2 µM, 6.0 ± 2.3 µM and 55 ± 28 µM for R271Q, L, K and S267I, respectively). CONCLUSIONS: 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.


Assuntos
Cloro/metabolismo , Clorofenóis/administração & dosagem , Epilepsia/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Receptores de Glicina/genética , Reflexo Anormal , Xilenos
8.
Pharmacology ; 89(5-6): 295-302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22538831

RESUMO

The neurosteroid alfaxalone exerts potent anesthetic activity in humans and animals. In former studies on myelinated axons, alfaxalone was assumed to produce a local anesthetic-like effect on the peripheral nervous system. Therefore,the present in vitro study aimed to characterize possible modulatory actions of alfaxalone on voltage-gated sodium channels. -Subunits of voltage-gated neuronal (Nav1.2)and skeletal muscle (Nav1.4) sodium channels were stably expressed in human embryonic kidney cells, and in vitro effects of alfaxalone were compared with lidocaine by means of the patch clamp technique. Alfaxalone preferentially blocked slow inactivated channels and therefore could provide membrane-stabilizing effects in ischemic/hypoxic tissues where slow inactivation is regarded to play a crucial role.


Assuntos
Anestésicos/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Pregnanodionas/farmacologia , Canais de Sódio/fisiologia , Células HEK293 , Humanos , Músculo Esquelético/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2 , Canal de Sódio Disparado por Voltagem NAV1.4 , Neurônios/fisiologia
9.
Pharmacology ; 87(1-2): 115-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21282969

RESUMO

Paracetamol (acetaminophen) is a widely used antipyretic and analgesic drug for mild or moderate pain states. As the primary site of action of paracetamol is still the subject of ongoing discussion, the focus of this study is the investigation of a potential mechanism which might contribute to its beneficial effects in the therapy of pain. Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. In this study we investigated the interaction of paracetamol with strychnine-sensitive α(1)-glycine receptors (α(1)-GlyR). α(1)-GlyR subunits transiently expressed in HEK-293 cells were studied using the whole-cell patch-clamp technique and a piezo-controlled liquid filament fast application system. Paracetamol fails to show a positive allosteric modulatory effect in low nano- to micromolar concentrations and lacks direct activation in micromolar concentrations at the α(1)-GlyR. Consequently, the analgesic actions of paracetamol leading to pain relief appear to be mediated via other mechanisms, but not via activation of spinal glycinergic pathways.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Antipiréticos/farmacologia , Receptores de Glicina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Cloretos/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicinérgicos/farmacologia , Células HEK293 , Humanos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Concentração Osmolar , Técnicas de Patch-Clamp , Subunidades Proteicas/agonistas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de Glicina/agonistas , Receptores de Glicina/genética , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/metabolismo , Análise de Célula Única
10.
Nat Biotechnol ; 39(6): 737-746, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33558697

RESUMO

Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.


Assuntos
Coração/embriologia , Intestinos/embriologia , Organoides/embriologia , Padronização Corporal , Desenvolvimento Embrionário , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Fator 4 Nuclear de Hepatócito/genética , Proteína Homeobox Nkx-2.5/genética , Humanos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXF/genética , Análise de Sequência de RNA
11.
Stem Cell Reports ; 14(5): 788-802, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302556

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent an attractive model to investigate CM function and disease mechanisms. One characteristic marker of ventricular specificity of human CMs is expression of the ventricular, slow ß-myosin heavy chain (MyHC), as opposed to the atrial, fast α-MyHC. The main aim of this study was to investigate at the single-cell level whether contraction kinetics and electrical activity of hESC-CMs are influenced by the relative expression of α-MyHC versus ß-MyHC. For effective assignment of functional parameters to the expression of both MyHC isoforms at protein and mRNA levels in the very same hESC-CMs, we developed a single-cell mapping technique. Surprisingly, α- versus ß-MyHC was not related to specific contractile or electrophysiological properties of the same cells. The multiparametric cell-by-cell analysis suggests that in hESC-CMs the expression of genes associated with electrical activity, contraction, calcium handling, and MyHCs is independently regulated.


Assuntos
Potenciais de Ação , Miosinas Cardíacas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Célula Única
12.
Nat Commun ; 11(1): 633, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005803

RESUMO

Despite proven efficacy of pharmacotherapies targeting primarily global neurohormonal dysregulation, heart failure (HF) is a growing pandemic with increasing burden. Treatments mechanistically focusing at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators and essential drivers of disease progression. We previously demonstrated that miR-132 is both necessary and sufficient to drive the pathological cardiomyocytes growth, a hallmark of adverse cardiac remodelling. Therefore, miR-132 may serve as a target for HF therapy. Here we report further mechanistic insight of the mode of action and translational evidence for an optimized, synthetic locked nucleic acid antisense oligonucleotide inhibitor (antimiR-132). We reveal the compound's therapeutic efficacy in various models, including a clinically highly relevant pig model of HF. We demonstrate favourable pharmacokinetics, safety, tolerability, dose-dependent PK/PD relationships and high clinical potential for the antimiR-132 treatment scheme.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Humanos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacocinética , Suínos
13.
Pharmacology ; 83(2): 95-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19065063

RESUMO

Modulation of inhibitory synaptic transmission within the central nervous system contributes considerably to the anaesthetic effects of propofol and its analogues in vivo. We have studied the effects of the non-anaesthetic propofol analogue 2,6-di-tert-butylphenol on rat alpha(1)beta(2)gamma(2) GABA(A) receptors expressed in a mammalian expression system (HEK 293 cells) using the whole-cell patch clamp technique. Our experiments showed that 2,6-di-tert-butylphenol completely lacks co-activation and direct activation of the inhibitory GABA(A) receptor. Our results support the assumption that modulation of inhibitory GABA(A) receptor function is responsible for the anaesthetic effects of propofol in vivo.


Assuntos
Fenóis/farmacologia , Propofol/análogos & derivados , Receptores de GABA-A/fisiologia , Anestésicos Intravenosos/agonistas , Anestésicos Intravenosos/farmacologia , Animais , Linhagem Celular , Agonistas de Receptores de GABA-A , Humanos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenóis/agonistas , Ratos , Receptores de GABA-A/efeitos dos fármacos , Transfecção , Ácido gama-Aminobutírico/farmacologia
14.
Pharmacology ; 83(4): 217-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19204413

RESUMO

Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Cannabidiol is a nonpsychotropic plant constituent of Cannabis sativa. As we hypothesized that non-CB receptor mechanisms of cannabidiol might contribute to its anti-inflammatory and neuroprotective effects, we investigated the interaction of cannabidiol with strychnine-sensitive alpha(1 )and alpha(1)beta glycine receptors by using the whole-cell patch clamp technique. Cannabidiol showed a positive allosteric modulating effect in a low micromolar concentration range (EC(50) values: alpha(1) = 12.3 +/- 3.8 micromol/l and alpha(1)beta = 18.1 +/- 6.2 micromol/l). Direct activation of glycine receptors was observed at higher concentrations above 100 micromol/l (EC(50) values: alpha(1) = 132.4 +/- 12.3 micromol/l and alpha(1)beta = 144.3 +/- 22.7 micromol/l). These in vitro results suggest that strychnine-sensitive glycine receptors may be a target for cannabidiol mediating some of its anti-inflammatory and neuroprotective properties.


Assuntos
Canabidiol/farmacologia , Canabinoides/farmacologia , Receptores de Glicina/agonistas , Linhagem Celular Transformada , Células Cultivadas , Células-Tronco Embrionárias , Glicina/farmacologia , Humanos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Receptores de Glicina/genética , Transfecção
15.
Pharmacology ; 83(5): 270-4, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19307742

RESUMO

Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. HU210 is a non-psychotropic, synthetic cannabinoid. As we hypothesized that non-CB receptor mechanisms of HU210 might contribute to its anti-inflammatory and anti-nociceptive effects we investigated the interaction of HU210 with strychnine-sensitive alpha(1 )glycine receptors by using the whole-cell patch clamp technique. HU210 showed a positive allosteric modulating effect in a low micromolar concentration range (EC(50): 5.1 +/- 2.6 micromol/l). Direct activation of glycine receptors was observed at higher concentrations above 100 micromol/l (EC(50): 188.7 +/- 46.2 micromol/l). These in vitro results suggest that strychnine-sensitive glycine receptors may be a target for HU210 mediating some of its anti-inflammatory and anti-nociceptive properties.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Dronabinol/análogos & derivados , Potenciais da Membrana/efeitos dos fármacos , Receptores de Glicina/agonistas , Linhagem Celular Transformada , Dronabinol/farmacologia , Glicina/administração & dosagem , Humanos , Transfecção
16.
Stem Cell Res ; 40: 101542, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473565

RESUMO

CFTR encodes for a chloride ion channel expressed primarily in secretory epithelia in the airways, intestine, liver and other tissues. Mutations in the CFTR gene have been identified in people suffering from Cystic Fibrosis. Here, we established a CFTR knock-in reporter cell line from a human iPSC line (MHHi006-A) using TALEN technology. The reporter enables the monitoring and optimization of the differentiation of pluripotent stem cells into CFTR expressing epithelia on a single cell level, as well as the enrichment of CFTR positive cells, which represent an excellent tool for Cystic Fibrosis disease modelling, drug screening and ultimately cellular therapies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Edição de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Potenciais de Ação/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Colforsina/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Masculino , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
17.
Sci Rep ; 9(1): 11173, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371804

RESUMO

Loss-of-function mutations of the SCN5A gene encoding for the sodium channel α-subunit NaV1.5 result in the autosomal dominant hereditary disease Brugada Syndrome (BrS) with a high risk of sudden cardiac death in the adult. We here engineered human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the CRISPR/Cas9 introduced BrS-mutation p.A735V-NaV1.5 (g.2204C > T in exon 14 of SCN5A) as a novel model independent of patient´s genetic background. Recent studies raised concern regarding the use of hiPSC-CMs for studying adult-onset hereditary diseases due to cells' immature phenotype. To tackle this concern, long-term cultivation of hiPSC-CMs on a stiff matrix (27-42 days) was applied to promote maturation. Patch clamp recordings of A735V mutated hiPSC-CMs revealed a substantially reduced upstroke velocity and sodium current density, a prominent rightward shift of the steady state activation curve and decelerated recovery from inactivation as compared to isogenic hiPSC-CMs controls. These observations were substantiated by a comparative study on mutant A735V-NaV1.5 channels heterologously expressed in HEK293T cells. In contrast to mutated hiPSC-CMs, a leftward shift of sodium channel inactivation was not observed in HEK293T, emphasizing the importance of investigating mechanisms of BrS in independent systems. Overall, our approach supports hiPSC-CMs' relevance for investigating channelopathies in a dish.


Assuntos
Síndrome de Brugada/genética , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Síndrome de Brugada/patologia , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Técnicas de Patch-Clamp
18.
Stem Cell Reports ; 13(2): 366-379, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31353227

RESUMO

Aiming at clinical translation, robust directed differentiation of human pluripotent stem cells (hPSCs), preferentially in chemically defined conditions, is a key requirement. Here, feasibility of suspension culture based hPSC-cardiomyocyte (hPSC-CM) production in low-cost, xeno-free media compatible with good manufacturing practice standards is shown. Applying stirred tank bioreactor systems at increasing dimensions, our advanced protocol enables routine production of about 1 million hPSC-CMs/mL, yielding ∼1.3 × 108 CM in 150 mL and ∼4.0 × 108 CMs in 350-500 mL process scale at >90% lineage purity. Process robustness and efficiency is ensured by uninterrupted chemical WNT pathway control at early stages of differentiation and results in the formation of almost exclusively ventricular-like CMs. Modulated WNT pathway regulation also revealed the previously unappreciated role of ROR1/CD13 as superior surrogate markers for predicting cardiac differentiation efficiency as soon as 72 h of differentiation. This monitoring strategy facilitates process upscaling and controlled mass production of hPSC derivatives.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Reatores Biológicos , Antígenos CD13/genética , Antígenos CD13/metabolismo , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Humanos , Mesoderma/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
19.
Reg Anesth Pain Med ; 42(4): 462-468, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28394849

RESUMO

BACKGROUND AND OBJECTIVES: Regional anesthesia includes application of local anesthetics (LAs) into the vicinity of peripheral nerves. Prolongation or improvement of nerve blocks with LAs can be accomplished by coapplication with adjuvants, including buprenorphine, ketamine, and clonidine. While the mechanisms mediating prolonged or improved LA-induced effects by adjuvants are poorly understood, we hypothesized that they are likely to increase LA-induced block of voltage-gated Na channels. In this study, we investigated the inhibitory effects of the LA bupivacaine alone and in combination with the adjuvants on neuronal Na channels. METHODS: Effects of bupivacaine, buprenorphine, ketamine, and clonidine on endogenous Na channels in ND7/23 neuroblastoma cells were investigated with whole-cell patch clamp. RESULTS: Bupivacaine, buprenorphine, ketamine, and clonidine are concentration- and state-dependent inhibitors of Na currents in ND7/23 cells. Tonic block of resting channels revealed an order of potency of bupivacaine (half-maximal inhibitory concentration [IC50] 178 ± 8 µM) > buprenorphine (IC50 172 ± 25) > clonidine (IC50 824 ± 55 µM) > ketamine (IC50 1377 ± 92 µM). Bupivacaine and buprenorphine, but not clonidine and ketamine, induced a strong use-dependent block at 10 Hz. Except for clonidine, all substances enhanced fast and slow inactivation. The combination of bupivacaine with one of the adjuvants resulted in a concentration-dependent potentiation bupivacaine-induced block. CONCLUSIONS: We demonstrate that buprenorphine, ketamine, and clonidine directly inhibit Na channels and that they potentiate the blocking efficacy of bupivacaine on Na channels. These data indicate that block of Na channels may account for the additive effects of adjuvants used for regional anesthesia.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Bupivacaína/administração & dosagem , Buprenorfina/administração & dosagem , Clonidina/administração & dosagem , Ketamina/administração & dosagem , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Potenciais de Ação/fisiologia , Anestésicos Locais/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos
20.
PLoS One ; 12(11): e0188008, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29141003

RESUMO

BACKGROUND: Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons. METHODS: Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA. RESULTS: Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1. SUMMARY: Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1.


Assuntos
Cálcio/metabolismo , Lidocaína/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Apoptose/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Cultivadas , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Transporte de Íons , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa