Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(14): 140501, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25166969

RESUMO

We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance setup and employing geometric discord, we evaluate the quantum correlations of a state without resorting to prior knowledge of its density matrix. The method is applicable to any 2 ⊗ d system and provides, in terms of number of measurements required, an advantage over full state tomography scaling with the dimension d of the unmeasured subsystem. The negativity of quantumness is measured as well for reference. We also observe the phenomenon of sudden transition of quantum correlations when local phase and amplitude damping channels are applied to the state.

2.
Phys Rev Lett ; 111(25): 250401, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24483731

RESUMO

Correlations in quantum systems exhibit a rich phenomenology under the effect of various sources of noise. We investigate theoretically and experimentally the dynamics of quantum correlations and their classical counterparts in two nuclear magnetic resonance setups, as measured by geometric quantifiers based on trace norm. We consider two-qubit systems prepared in Bell diagonal states, and perform the experiments in real decohering environments resulting from Markovian local noise which preserves the Bell diagonal form of the states. We then report the first observation of environment-induced double sudden transitions in the geometric quantum correlations, a genuinely nonclassical effect not observable in classical correlations. The evolution of classical correlations in our physical implementation reveals in turn the finite-time relaxation to a pointer basis under nondissipative decoherence, which we characterize geometrically in full analogy with predictions based on entropic measures.

3.
Phys Rev Lett ; 107(7): 070501, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902378

RESUMO

The quantification of quantum correlations (other than entanglement) usually entails labored numerical optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to have a laboratory friendly witness for the nature of correlations. In this Letter we report a direct experimental implementation of such a witness in a room temperature nuclear magnetic resonance system. In our experiment the nature of correlations is revealed by performing only few local magnetization measurements. We also compared the witness results with those for the symmetric quantum discord and we obtained a fairly good agreement.

4.
Phys Rev Lett ; 107(14): 140403, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107179

RESUMO

Nonclassical correlations play a crucial role in the development of quantum information science. The recent discovery that nonclassical correlations can be present even in separable (nonentangled) states has broadened this scenario. This generalized quantum correlation has been increasing in relevance in several fields, among them quantum communication, quantum computation, quantum phase transitions, and biological systems. We demonstrate here the occurrence of the sudden-change phenomenon and immunity against some sources of noise for the quantum discord and its classical counterpart, in a room temperature nuclear magnetic resonance setup. The experiment is performed in a decohering environment causing loss of phase relations among the energy eigenstates and exchange of energy between system and environment, resulting in relaxation to the Gibbs ensemble.

5.
Magn Reson Chem ; 48(9): 704-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20641133

RESUMO

This article describes a solid-state NMR (SSNMR) investigation of the influence of hydration and chemical cross-linking on the molecular dynamics of the constituents of the bovine pericardium (BP) tissues and its relation to the mechanical properties of the tissue. Samples of natural phenethylamine-diepoxide (DE)- and glutaraldehyde (GL)-fixed BP were investigated by (13)C cross-polarization SSNMR to probe the dynamics of the collagen, and the results were correlated to the mechanical properties of the tissues, probed by dynamical mechanical analysis. For samples of natural BP, the NMR results show that the higher the hydration level the more pronounced the molecular dynamics of the collagen backbone and sidechains, decreasing the tissue's elastic modulus. In contrast, in DE- and GL-treated samples, the collagen molecules are more rigid, and the hydration seems to be less effective in increasing the collagen molecular dynamics and reducing the mechanical strength of the samples. This is mostly attributed to the presence of cross-links between the collagen plates, which renders the collagen mobility less dependent on the water absorption in chemically treated samples.


Assuntos
Colágeno/química , Simulação de Dinâmica Molecular , Pericárdio/química , Animais , Isótopos de Carbono , Bovinos , Espectroscopia de Ressonância Magnética/normas , Estrutura Molecular , Padrões de Referência
6.
J Phys Chem B ; 113(33): 11403-13, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19627117

RESUMO

This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly[(9,9-dioctyl-2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These structures were determined by wide-angle X-ray scattering (WAXS) measurements. Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of approximately 4.5 A and laterally spaced by about approximately 16 A, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in the aggregated structures. Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, our data explain many features of the temperature dependence of the photoluminescence of these two polymers.

7.
J Chem Phys ; 130(14): 144501, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19368455

RESUMO

This paper presents a description of nuclear magnetic resonance (NMR) of quadrupolar systems using the Holstein-Primakoff (HP) formalism and its analogy with a Bose-Einstein condensate (BEC) system. Two nuclear spin systems constituted of quadrupolar nuclei I=3/2 ((23)Na) and I=7/2 ((133)Cs) in lyotropic liquid crystals were used for experimental demonstrations. Specifically, we derived the conditions necessary for accomplishing the analogy, executed the proper experiments, and compared with quantum mechanical prediction for a Bose system. The NMR description in the HP representation could be applied in the future as a workbench for BEC-like systems, where the statistical properties may be obtained using the intermediate statistic, first established by Gentile. The description can be applied for any quadrupolar systems, including new developed solid-state NMR GaAS nanodevices.

8.
J Magn Reson ; 192(1): 17-26, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18295520

RESUMO

This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation.

9.
J Magn Reson ; 175(2): 226-34, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15921938

RESUMO

This article presents the realization of many self-reversible quantum logic gates using two-qubit quadrupolar spin 3/2 systems. Such operations are theoretically described using propagation matrices for the RF pulses that include the effect of the quadrupolar evolution during the pulses. Experimental demonstrations are performed using a generalized form of the recently developed method for quantum state tomography in spin 3/2 systems. By doing so, the possibility of controlling relative phases of superimposed pseudo-pure states is demonstrated. In addition, many aspects of the effect of the quadrupolar evolution, occurring during the RF pulses, on the quantum operations performance are discussed. Most of the procedures presented can be easily adapted to describe selective pulses of higher spin systems (>3/2) and for spin 1/2 under J couplings.

10.
Sci Rep ; 5: 14671, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446614

RESUMO

Quantum algorithms are known for providing more efficient solutions to certain computational tasks than any corresponding classical algorithm. Here we show that a single qudit is sufficient to implement an oracle based quantum algorithm, which can solve a black-box problem faster than any classical algorithm. For 2d permutation functions defined on a set of d elements, deciding whether a given permutation is even or odd, requires evaluation of the function for at least two elements. We demonstrate that a quantum circuit with a single qudit can determine the parity of the permutation with only one evaluation of the function. Our algorithm provides an example for quantum computation without entanglement since it makes use of the pure state of a qudit. We also present an experimental realization of the proposed quantum algorithm with a quadrupolar nuclear magnetic resonance using a single four-level quantum system, i.e., a ququart.

11.
J Magn Reson ; 142(1): 86-96, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10617438

RESUMO

Three exchange nuclear magnetic resonance (NMR) techniques are presented that yield (13)C NMR spectra exclusively of slowly reorienting segments, suppressing the often dominant signals of immobile components. The first technique eliminates the diagonal ridge that usually dominates two-dimensional (2D) exchange NMR spectra and that makes it hard to detect the broad and low off-diagonal exchange patterns. A modulation of the 2D exchange spectrum by the sine-square of a factor which is proportional to the difference between evolution and detection frequencies is generated by fixed additional evolution and detection periods of duration tau, yielding a 2D pure-exchange (PUREX) spectrum. Smooth off-diagonal intensity is obtained by systematically incrementing tau and summing up the resulting spectra. The related second technique yields a static one-dimensional (1D) spectrum selectively of the exchanging site(s), which can thus be identified. Efficient detection of previously almost unobservable slow motions in a semicrystalline polymer is demonstrated. The third approach, a 1D pure-exchange experiment under magic-angle spinning, is an extension of the exchange-induced sideband (EIS) method. A TOSS (total suppression of sidebands) spectrum obtained after the same number of pulses and delays, with a simple swap of z periods, is subtracted from the EIS spectrum, leaving only the exchange-induced sidebands and a strong, easily detected centerband of the mobile site(s).


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Isótopos de Carbono , Dimetil Sulfóxido , Sulfonas
12.
J Phys Chem B ; 116(20): 5993-6002, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22530554

RESUMO

This work reports a detailed spectroscopy study of a series of multiblock conjugated nonconjugated copolymers built by p-phenylene vinylene type units (PV) and octamethylene spacers, namely, poly(1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene) (LaPPS18). The relative proportions of the PV and aliphatic segments were estimated on the basis of solid-state NMR and Raman spectroscopy. The overall structure was characterized by wide angle X-ray diffraction; (1)H wide-line dipolar chemical shift correlation (DIPSHIFT), and centerband-only detection of exchange (CODEX) NMR data, that together with glass transition temperatures allowed us to identify the groups involved in the molecular dynamics. These different structural properties were used to explain the photoluminescence properties in terms of peak position and spectral profile.

13.
J Chem Phys ; 126(15): 154506, 2007 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-17461646

RESUMO

In this paper, we describe a quantum state tomography method based on global rotations of the spin system which, together with a coherence selection scheme, enables the complete density matrix reconstruction. The main advantage of this technique, in respect to previous proposals, is the use of much shorter rf pulses, which decreases significantly the time necessary for algorithm quantum state tomography. In this case, under adequate experimental conditions, the rf pulses correspond to simple spatial rotations of the spin states, and its analytical description is conveniently given in the irreducible tensor formalism. Simulated results show the feasibility of the method for a single spin 72 nucleus. As an experimental result, we exemplify the application of this method by tomographing the steps during the implementation of the Deutsch algorithm. The algorithm was implemented in a (23)Na quadrupole nucleus using the strongly modulated pulses technique. We also extended the tomography method for a 3-coupled homonuclear spin 12 system, where an additional evolution under the internal Hamiltonian is necessary for zero order coherences evaluation.

14.
J Chem Phys ; 122(15): 154506, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15945644

RESUMO

One-dimensional (1D) exchange NMR experiments can elucidate the geometry, time scale, memory, and heterogeneity of slow molecular motions (1 ms-1 s) in solids. The one-dimensional version of pure-exchange (PUREX) solid-state exchange NMR, which is applied to static samples and uses the chemical shift anisotropy as a probe for molecular motion, is particularly promising and convenient in applications where site resolution is not a problem, i.e., in systems with few chemical sites. In this work, some important aspects of the 1D PUREX experiment applied to systems with complex molecular motions are analyzed. The influence of intermediate-regime (10 micros-1 ms) motions and of the distribution of reorientation angles on the pure-exchange intensity are discussed, together with a simple method for estimating the activation energy of motions occurring with a single correlation time. In addition, it is demonstrated that detailed information on the motional geometry can be obtained from 1D PUREX spectral line shapes. Experiments on a molecular crystal, dimethyl sulfone, confirm the analysis quantitatively. In two amorphous polymers, atactic polypropylene (aPP) and polyisobutylene (PIB), which differ only by one methyl group in the repeat unit, the height of the normalized exchange intensity clearly reveals a striking difference in the width of the distribution of correlation times slightly above the glass transition. The aPP shows the broad distribution and Williams-Landel-Ferry temperature dependence of correlation times typical of polymers and other "fragile" glass formers. In contrast, the dynamics in PIB occur essentially with a single correlation time and exhibits Arrhenius behavior, which is more typical of "strong" glass formers; this is somewhat surprising given the weak intermolecular forces in PIB.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa