Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35535520

RESUMO

Sonic hedgehog (SHH) medulloblastoma originates from the cerebellar granule neuron progenitor (CGNP) lineage, which depends on Hedgehog signaling for its perinatal expansion. Whereas SHH tumors exhibit overall deregulation of this pathway, they also show patient age-specific aberrations. To investigate whether the developmental stage of the CGNP can account for these age-specific lesions, we analyzed developing murine CGNP transcriptomes and observed highly dynamic gene expression as a function of age. Cross-species comparison with human SHH medulloblastoma showed partial maintenance of these expression patterns, and highlighted low primary cilium expression as hallmark of infant medulloblastoma and early embryonic CGNPs. This coincided with reduced responsiveness to upstream SHH pathway component Smoothened, whereas sensitivity to downstream components SUFU and GLI family proteins was retained. Together, these findings can explain the preference for SUFU mutations in infant medulloblastoma and suggest that drugs targeting the downstream SHH pathway will be most appropriate for infant patients.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Células-Tronco Neurais , Animais , Proliferação de Células/fisiologia , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Camundongos , Células-Tronco Neurais/metabolismo
2.
Cell Mol Life Sci ; 79(8): 398, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790583

RESUMO

Glioblastoma (GBM), a highly malignant and lethal brain tumor, is characterized by diffuse invasion into the brain and chemo-radiotherapy resistance resulting in poor prognosis. In this study, we examined the involvement of the cell adhesion molecule CD146/MCAM in regulating GBM aggressiveness. Analyses of GBM transcript expression databases revealed correlations of elevated CD146 levels with higher glioma grades, IDH-wildtype and unmethylated MGMT phenotypes, poor response to chemo-radiotherapy and worse overall survival. In a panel of GBM stem cells (GSCs) variable expression levels of CD146 were detected, which strongly increased upon adherent growth. CD146 was linked with mesenchymal transition since expression increased in TGF-ß-treated U-87MG cells. Ectopic overexpression of CD146/GFP in GG16 cells enhanced the mesenchymal phenotype and resulted in increased cell invasion. Conversely, GSC23-CD146 knockouts had decreased mesenchymal marker expression and reduced cell invasion in transwell and GBM-cortical assembloid assays. Moreover, using GSC23 xenografted zebrafish, we found that CD146 depletion resulted in more compact delineated tumor formation and reduced tumor cell dissemination. Stem cell marker expression and neurosphere formation assays showed that CD146 increased the stem cell potential of GSCs. Furthermore, CD146 mediated radioresistance by stimulating cell survival signaling through suppression of p53 expression and activation of NF-κB. Interestingly, CD146 was also identified as an inducer of the oncogenic Yes-associated protein (YAP). In conclusion, CD146 carries out various pro-tumorigenic roles in GBM involving its cell surface receptor function, which include the stimulation of mesenchymal and invasive properties, stemness, and radiotherapy resistance, thus providing an interesting target for therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/patologia , Antígeno CD146/genética , Antígeno CD146/metabolismo , Glioblastoma/patologia , Glioma/patologia , Peixe-Zebra/metabolismo
3.
Cell Mol Neurobiol ; 42(8): 2863-2892, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34709498

RESUMO

Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.


Assuntos
Astrocitoma , Esclerose Tuberosa , Humanos , Astrocitoma/metabolismo , Metilação de DNA/genética , Sirolimo/uso terapêutico , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia
4.
Clin Neuropathol ; 41(5): 211-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575415

RESUMO

This case report concerns a 31-year-old male with an aggressive pituitary tumor who presented initially with bitemporal hemianopsia and slightly elevated prolactin. On magnetic resonance imaging of the brain, there was a sellar mass with parasellar invasion to the lateral aspects of the internal carotid arteries, compressing the optic chiasm. On histopathological analysis, the diagnosis was made of a densely granulated lactotroph pituitary tumor with a Ki67 proliferation rate of 15%, a mitotic count of 6/10 high-power fields, and p53 positivity. Based on these features, the tumor was classified as a grade 2b tumor according to the Trouillas classification, and a more aggressive behavior of the tumor could be expected. In order to anticipate a future need for alternative drug treatments, the following analyses were undertaken: MGMT methylation (present) as well as the expression of estrogen receptor (negative), programmed-death ligand 1 (60 - 70% positive tumor cells), vascular endothelial growth factor-A and somatostatin receptor 2 (both positive). There was regrowth of residual tumor tissue, and the treatment consisted thus far of repeat surgery, cabergoline, pasireotide, and radiotherapy. Chemotherapy with temozolomide could not yet be initiated due to a concurrent infertility treatment. This case is unique because the tumor displays atypical characteristics, both in terms of morphology and behavior. It also illustrates how pathologists can play an important role in determining the diagnosis, prognosis, and possibilities for targeted therapy.


Assuntos
Lactotrofos , Neoplasias Hipofisárias , Adulto , Cabergolina/uso terapêutico , Humanos , Antígeno Ki-67 , Lactotrofos/patologia , Masculino , Neoplasias Hipofisárias/patologia , Prolactina/uso terapêutico , Receptores de Estrogênio/uso terapêutico , Proteína Supressora de Tumor p53/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
5.
J Neurooncol ; 153(2): 211-222, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33768405

RESUMO

PURPOSE: Meningioma recurrence rates can be reduced by optimizing surgical resection with the use of intraoperative molecular fluorescence guided surgery (MFGS). We evaluated the potential of the fluorescent tracer 800CW-TATE for MFGS using in vitro and in vivo models. It targets somatostatin receptor subtype 2 (SSTR2), which is overexpressed in all meningiomas. METHODS: Binding affinity of 800CW-TATE was evaluated using [177Lu] Lu-DOTA-Tyr3-octreotate displacement assays. Tumor uptake was determined by injecting 800CW-TATE in (SSTR2-positive) NCI-H69 or (SSTR2-negative) CH-157MN xenograft bearing mice and FMT2500 imaging. SSTR2-specific binding was measured by comparing tumor uptake in NCI-H69 and CH-157MN xenografts, blocking experiments and non-targeted IRDye800CW-carboxylate binding. Tracer distribution was analyzed ex vivo, and the tumor-to-background ratio (TBR) was calculated. SSTR2 expression was determined by immunohistochemistry (IHC). Lastly, 800CW-TATE was incubated on frozen and fresh meningioma specimens and analyzed by microscopy. RESULTS: 800CW-TATE binding affinity assays showed an IC50 value of 72 nM. NCI-H69 xenografted mice showed a TBR of 21.1. 800CW-TATE detection was reduced after co-administration of non-fluorescent DOTA-Tyr3-octreotate or administration of IRDye800CW. CH-157MN had no tumor specific tracer staining due to absence of SSTR2 expression, thereby serving as a negative control. The tracer bound specifically to SSTR2-positive meningioma tissues representing all WHO grades. CONCLUSION: 800CW-TATE demonstrated sufficient binding affinity, specific SSTR2-mediated tumor uptake, a favorable biodistribution, and high TBR. These features make this tracer very promising for use in MFGS and could potentially aid in safer and a more complete meningioma resection, especially in high-grade meningiomas or those at complex anatomical localizations.


Assuntos
Neoplasias Meníngeas , Meningioma , Animais , Fluorescência , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
6.
Brain ; 143(1): 131-149, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834371

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the CNS, TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to impaired circulation of CSF resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. In the present study, high-throughput RNA-sequencing (SEGAs n = 19, periventricular control n = 8) was used in combination with computational approaches to unravel the complexity of SEGA development. We identified 9400 mRNAs and 94 microRNAs differentially expressed in SEGAs compared to control tissue. The SEGA transcriptome profile was enriched for the mitogen-activated protein kinase (MAPK) pathway, a major regulator of cell proliferation and survival. Analysis at the protein level confirmed that extracellular signal-regulated kinase (ERK) is activated in SEGAs. Subsequently, the inhibition of ERK independently of mTORC1 blockade decreased efficiently the proliferation of primary patient-derived SEGA cultures. Furthermore, we found that LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4 and LAMTOR5 were overexpressed at both gene and protein levels in SEGA compared to control tissue. Taken together LAMTOR1-5 can form a complex, known as the 'Ragulator' complex, which is known to activate both mTORC1 and MAPK/ERK pathways. Overall, this study shows that the MAPK/ERK pathway could be used as a target for treatment independent of, or in combination with mTORC1 inhibitors for TSC patients. Moreover, our study provides initial evidence of a possible link between the constitutive activated mTORC1 pathway and a secondary driver pathway of tumour growth.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Esclerose Tuberosa/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrocitoma/etiologia , Astrocitoma/metabolismo , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/metabolismo , Butadienos/farmacologia , Criança , Pré-Escolar , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Nitrilas/farmacologia , RNA-Seq , Análise de Sequência de RNA , Esclerose Tuberosa/complicações , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Células Tumorais Cultivadas , Adulto Jovem
7.
Glia ; 66(12): 2645-2658, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30306644

RESUMO

V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) is a negative checkpoint regulator (NCR) involved in inhibition of T cell-mediated immunity. Expression changes of other NCRs (PD-1, PD-L1/L2, CTLA-4) during inflammation of the central nervous system (CNS) were previously demonstrated, but VISTA expression in the CNS has not yet been explored. Here, we report that in the human and mouse CNS, VISTA is most abundantly expressed by microglia, and to lower levels by endothelial cells. Upon TLR stimulation, VISTA expression was reduced in primary neonatal mouse and adult rhesus macaque microglia in vitro. In mice, microglial VISTA expression was reduced after lipopolysaccharide (LPS) injection, during experimental autoimmune encephalomyelitis (EAE), and in the accelerated aging Ercc1 Δ/- mouse model. After LPS injection, decreased VISTA expression in mouse microglia was accompanied by decreased acetylation of lysine residue 27 in histone 3 in both its promoter and enhancer region. ATAC-sequencing indicated a potential regulation of VISTA expression by Pu.1 and Mafb, two transcription factors crucial for microglia function. Finally, our data suggested that VISTA expression was decreased in microglia in multiple sclerosis lesion tissue, whereas it was increased in Alzheimer's disease patients. This study is the first to demonstrate that in the CNS, VISTA is expressed by microglia, and that VISTA is differentially expressed in CNS pathologies.


Assuntos
Doenças do Sistema Nervoso Central/complicações , Inflamação/etiologia , Inflamação/patologia , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Microglia/patologia , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Proteínas de Ligação ao Cálcio , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Endonucleases/genética , Endonucleases/metabolismo , Feminino , Adjuvante de Freund/toxicidade , Expressão Gênica/fisiologia , Humanos , Lipopolissacarídeos/farmacologia , Macaca mulatta , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos , Microglia/efeitos dos fármacos , Glicoproteína Mielina-Oligodendrócito/toxicidade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/toxicidade
8.
Ann Neurol ; 81(6): 898-903, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28439961

RESUMO

Brains from patients with Parkinson disease or dementia with Lewy bodies show aggregation of alpha-synuclein in precerebellar brainstem structures. Furthermore, patients exhibit resting tremor, unstable gait, and impaired balance, which may be associated with cerebellar dysfunction. Therefore, we screened the cerebella of 12 patients with alpha-synucleinopathies for neuropathological changes. Cerebellar nuclei and neighboring white matter displayed numerous aggregates, whereas lobules were mildly affected. Cerebellar aggregation pathology may suggest a prionlike spread originating from affected precerebellar structures, and the high homogeneity between patients with dementia with Lewy bodies and Parkinson disease shows that both diseases likely belong to the same neuropathological spectrum. Ann Neurol 2017;81:898-903.


Assuntos
Doenças Cerebelares , Doença por Corpos de Lewy , alfa-Sinucleína/metabolismo , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
9.
Eur J Nucl Med Mol Imaging ; 45(13): 2404-2412, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30032322

RESUMO

PURPOSE: Response evaluation in patients with glioblastoma after chemoradiotherapy is challenging due to progressive, contrast-enhancing lesions on MRI that do not reflect true tumour progression. In this study, we prospectively evaluated the ability of the PET tracer 18F-fluorothymidine (FLT), a tracer reflecting proliferative activity, to discriminate between true progression and pseudoprogression in newly diagnosed glioblastoma patients treated with chemoradiotherapy. METHODS: FLT PET and MRI scans were performed before and 4 weeks after chemoradiotherapy. MRI scans were also performed after three cycles of adjuvant temozolomide. Pseudoprogression was defined as progressive disease on MRI after chemoradiotherapy with stabilisation or reduction of contrast-enhanced lesions after three cycles of temozolomide, and was compared with the disease course during long-term follow-up. Changes in maximum standardized uptake value (SUVmax) and tumour-to-normal uptake ratios were calculated for FLT and are presented as the mean SUVmax for multiple lesions. RESULTS: Between 2009 and 2012, 30 patients were included. Of 24 evaluable patients, 7 showed pseudoprogression and 7 had true progression as defined by MRI response. FLT PET parameters did not significantly differ between patients with true progression and pseudoprogression defined by MRI. The correlation between change in SUVmax and survival (p = 0.059) almost reached the standard level of statistical significance. Lower baseline FLT PET uptake was significantly correlated with improved survival (p = 0.022). CONCLUSION: Baseline FLT uptake appears to be predictive of overall survival. Furthermore, changes in SUVmax over time showed a tendency to be associated with improved survival. However, further studies are necessary to investigate the ability of FLT PET imaging to discriminate between true progression and pseudoprogression in patients with glioblastoma.


Assuntos
Didesoxinucleosídeos , Progressão da Doença , Glioblastoma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Proliferação de Células , Quimiorradioterapia , Diagnóstico Diferencial , Feminino , Seguimentos , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal
10.
Glia ; 65(1): 50-61, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27615381

RESUMO

Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder that is caused by a CAG expansion in the Huntingtin (HTT) gene, leading to HTT inclusion formation in the brain. The mutant huntingtin protein (mHTT) is ubiquitously expressed and therefore nuclear inclusions could be present in all brain cells. The effects of nuclear inclusion formation have been mainly studied in neurons, while the effect on glia has been comparatively disregarded. Astrocytes, microglia, and oligodendrocytes are glial cells that are essential for normal brain function and are implicated in several neurological diseases. Here we examined the number of nuclear mHTT inclusions in both neurons and various types of glia in the two brain areas that are the most affected in HD, frontal cortex, and striatum. We compared nuclear mHTT inclusion body formation in three HD mouse models that express either full-length HTT or an N-terminal exon1 fragment of mHTT, and we observed nuclear inclusions in neurons, astrocytes, oligodendrocytes, and microglia. When studying the frequency of cells with nuclear inclusions in mice, we found that half of the population of neurons contained nuclear inclusions at the disease end stage, whereas the proportion of GFAP-positive astrocytes and oligodendrocytes having a nuclear inclusion was much lower, while microglia hardly showed any nuclear inclusions. Nuclear inclusions were also present in neurons and all studied glial cell types in human patient material. This is the first report to compare nuclear mHTT inclusions in glia and neurons in different HD mouse models and HD patient brains. GLIA 2016;65:50-61.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Doença de Huntington/metabolismo , Masculino , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo
11.
Hum Mol Genet ; 24(19): 5451-63, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26220979

RESUMO

Machado-Joseph disease (MJD) is a fatal, dominantly inherited neurodegenerative disorder associated with an expanded polyglutamine tract within the ataxin-3 protein, and characterized by progressive impairment of motor coordination, associated with neurodegeneration of specific brain regions, including cerebellum and striatum. The currently available therapies do not allow modification of disease progression. Neuropeptide Y (NPY) has been shown to exert potent neuroprotective effects by multiple pathways associated with the MJD mechanisms of disease. Thus, we evaluated NPY levels in MJD and investigated whether raising NPY by gene transfer would alleviate neuropathological and behavioural deficits in cerebellar and striatal mouse models of the disease. For that, a cerebellar transgenic and a striatal lentiviral-based models of MJD were used. NPY overexpression in the affected brain regions in these two mouse models was obtained by stereotaxic injection of adeno-associated viral vectors encoding NPY. Up to 8 weeks after viral injection, balance and motor coordination behaviour and neuropathology were analysed. We observed that NPY levels were decreased in two MJD patients' cerebella and in striata and cerebella of disease mouse models. Furthermore, overexpression of NPY alleviated the motor coordination impairments and attenuated the related neuropathological parameters, preserving cerebellar volume and granular layer thickness, reducing striatal lesion and decreasing mutant ataxin-3 aggregation. Additionally, NPY mediated increase of brain-derived neurotrophic factor levels and decreased neuroinflammation markers. Our data suggest that NPY is a potential therapeutic strategy for MJD.


Assuntos
Cerebelo/fisiopatologia , Doença de Machado-Joseph/terapia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Córtex Visual/fisiopatologia , Animais , Ataxina-3/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação para Baixo , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Visual/metabolismo
12.
J Neurooncol ; 131(1): 11-20, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633774

RESUMO

Glioblastoma (GBM) is a highly vascularized and aggressive type of primary brain tumor in adults with dismal survival. Molecular subtypes of GBM have been identified that are related to clinical outcome and response to therapy. Although the mesenchymal type has been ascribed higher angiogenic activity, extensive characterization of the vascular component in GBM subtypes has not been performed. Therefore, we aimed to investigate the differential vascular status and angiogenic signaling levels in molecular subtypes. GBM tissue samples representing proneural IDH1 mutant, classical-like and mesenchymal-like subtypes were analyzed by morphometry for the number of vessels, vessel size and vessel maturity. Also the expression levels of factors from multiple angiogenic signaling pathways were determined. We found that necrotic and hypoxic areas were relatively larger in mesenchymal-like tumors and these tumors also had larger vessels. However, the number of vessels, basement membrane deposition and pericyte coverage did not vary between the subtypes. Regarding signaling patterns the majority of factors were expressed at similar levels in the subtypes, and only ANGPT2, MMP2, TIMP1, VEGFA and MMP9/TIMP2 were higher expressed in GBMs of the classical-like subtype. In conclusion, although morphological differences were observed between the subtypes, the angiogenic signaling status of GBM subtypes seemed to be rather similar. These results challenge the concept of mesenchymal GBMs being more angiogenic than other subclasses.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Neovascularização Patológica/etiologia , Actinas/metabolismo , Idoso , Antígenos CD34/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Anidrase Carbônica IX/metabolismo , Estudos de Coortes , Endoglina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Necrose/etiologia , Transdução de Sinais/fisiologia
14.
Aging Cell ; 23(3): e14066, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38234228

RESUMO

Progressive neurocognitive dysfunction is the leading cause of a reduced quality of life in patients with primary brain tumors. Understanding how the human brain responds to cancer and its treatment is essential to improve the associated cognitive sequelae. In this study, we performed integrated transcriptomic and tissue analysis on postmortem normal-appearing non-tumor brain tissue from glioblastoma (GBM) patients that had received cancer treatments, region-matched brain tissue from unaffected control individuals and Alzheimer's disease (AD) patients. We show that normal-appearing non-tumor brain regions of patients with GBM display hallmarks of accelerated aging, in particular mitochondrial dysfunction, inflammation, and proteostasis deregulation. The extent and spatial pattern of this response decreased with distance from the tumor. Gene set enrichment analyses and a direct comparative analysis with an independent cohort of brain tissue samples from AD patients revealed a significant overlap in differentially expressed genes and a similar biological aging trajectory. Additionally, these responses were validated at the protein level showing the presence of increased lysosomal lipofuscin, phosphorylated microtubule-associated protein Tau, and oxidative DNA damage in normal-appearing brain areas of GBM patients. Overall, our data show that the brain of GBM patients undergoes accelerated aging and shared AD-like features, providing the basis for novel or repurposed therapeutic targets for managing brain tumor-related side effects.


Assuntos
Doença de Alzheimer , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Qualidade de Vida , Encéfalo/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/patologia
15.
J Neurosurg ; : 1-12, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968617

RESUMO

OBJECTIVE: Meningiomas are one of the most frequently occurring brain tumors and can be curatively treated with gross-total resection. A subtotal resection increases the chances of recurrence. The intraoperative identification of invisible tumor remnants by using a fluorescent tracer targeting an upregulated biomarker could help to optimize meningioma resection. This is called molecular fluorescence-guided surgery (MFGS). Vascular endothelial growth factor α (VEGFα) has been identified as a suitable meningioma biomarker and can be targeted with bevacizumab-IRDye800CW. METHODS: The aim of this prospective phase I trial was to determine the safety and feasibility of bevacizumab-IRDye800CW for MFGS for intracranial meningiomas by administering 4.5, 10, or 25 mg of the tracer 2-4 days prior to surgery. Fluorescence was verified during the operation with the standard neurosurgical microscope, and tissue specimens were postoperatively analyzed with fluorescence imaging systems (Pearl and Odyssey CLx) and spectroscopy to determine the optimal dose. Uptake was compared in several tissue types and correlated with VEGFα expression. RESULTS: No adverse events related to the use of bevacizumab-IRDye800CW occurred. After two interim analyses, 10 mg was the optimal dose based on ex vivo tumor-to-background ratio. Although the standard intraoperative imaging revealed no fluorescence, postoperative analyses with tailored imaging systems showed high fluorescence uptake in tumor compared with unaffected dura mater and brain. Additionally, tumor invasion of the dura mater (dural tail) and invasion of bone could be distinguished using fluorescence imaging. Fluorescence intensity showed a good correlation with VEGFα expression. CONCLUSIONS: Bevacizumab-IRDye800CW can be safely used in patients with meningioma; 10 mg bevacizumab-IRDye800CW provided an adequate tumor-to-background ratio. Adjustments of the currently available neurosurgical microscopes are needed to achieve visualization of targeted IRDye800CW intraoperatively. A phase II/III trial is needed to methodically investigate the benefit of MFGS with bevacizumab-IRDye800CW for meningioma surgery in a larger cohort of patients.

16.
Free Radic Biol Med ; 215: 14-24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395091

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) poses an increased risk for severe illness and suboptimal vaccination responses in patients with kidney disease, in which oxidative stress may be involved. Oxidative stress can be reliably measured by determining circulating free thiols (R-SH, sulfhydryl groups), since R-SH are rapidly oxidized by reactive species. In this study, we aimed to examine the association between serum free thiols and the ability to mount a humoral immune response to SARS-CoV-2 vaccination in kidney patients. METHODS: Serum free thiol concentrations were measured in patients with chronic kidney disease stages 4/5 (CKD G4/5) (n = 46), on dialysis (n = 43), kidney transplant recipients (KTR) (n = 73), and controls (n = 50). Baseline serum free thiol and interferon-γ-induced protein-10 (IP-10) - a biomarker of the interferon response - were analyzed for associations with seroconversion rates and SARS-CoV-2 spike (S1)-specific IgG concentrations after two doses of the mRNA-1273 vaccine. RESULTS: Albumin-adjusted serum free thiol concentrations were significantly lower in patients with CKD G4/5 (P < 0.001), on dialysis (P < 0.001), and KTR (P < 0.001), as compared to controls. Seroconversion rates after full vaccination were markedly reduced in KTR (52.1%) and were significantly associated with albumin-adjusted free thiols (OR = 1.76, P = 0.033). After adjustment for MMF use, hemoglobin, and eGFR, this significance was not sustained (OR = 1.49, P = 0.241). CONCLUSIONS: KTR show suboptimal serological responses to SARS-CoV-2 vaccination, which is inversely associated with serum R-SH, reflecting systemic oxidative stress. Albeit this association was not robust to relevant confounding factors, it may at least partially be involved in the inability of KTR to generate a positive serological response after SARS-CoV-2 vaccination.


Assuntos
COVID-19 , Transplante de Rim , Insuficiência Renal Crônica , Humanos , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19 , Albuminas , Compostos de Sulfidrila , Imunoglobulina G , Anticorpos Antivirais , Vacinação
17.
J Leukoc Biol ; 115(4): 780-789, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38252562

RESUMO

COVID-19 is of special concern to immunocompromised individuals, including organ transplant recipients. However, the exact implications of COVID-19 for the immunocompromised host remain unclear. Existing theories regarding this matter are controversial and mainly based on clinical observations. Here, the postmortem histopathology, immunopathology, and viral presence in various tissues of a kidney transplant recipient with COVID-19 were compared to those of 2 nontransplanted patients with COVID-19 matched for age, sex, length of intensive care unit stay, and admission period in the pandemic. None of the tissues of the kidney transplant recipient demonstrated the presence of SARS-CoV-2. In lung tissues of both controls, some samples showed viral positivity with high Ct values with quantitative reverse transcription polymerase chain reaction. The lungs of the kidney transplant recipient and controls demonstrated similar pathology, consisting of acute fibrinous and organizing pneumonia with thrombosis and an inflammatory response with T cells, B cells, and macrophages. The kidney allograft and control kidneys showed a similar pattern of interstitial lymphoplasmacytic infiltration. No myocarditis could be observed in the hearts of the kidney transplant recipient and controls, although all cases contained scattered lymphoplasmacytic infiltrates in the myocardium, pericardium, and atria. The brainstems of the kidney transplant recipient and controls showed a similar pattern of lymphocytic inflammation with microgliosis. This research report highlights the possibility that, based on the results obtained from this single case, at time of death, the immune response in kidney transplant recipients with long-term antirejection immunosuppression use prior to severe illness is similar to nontransplanted deceased COVID-19 patients.


Assuntos
COVID-19 , Transplante de Rim , Humanos , SARS-CoV-2 , Transplante de Rim/efeitos adversos , Relatório de Pesquisa , Terapia de Imunossupressão/métodos
18.
Ann Neurol ; 72(6): 870-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280838

RESUMO

OBJECTIVE: To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21-q21. METHODS: Exome sequencing was used to identify the causal mutation in a large SCA19 family. We then screened 230 ataxia families for mutations located in the same gene (KCND3, also known as Kv4.3) using high-resolution melting. SCA19 brain autopsy material was evaluated, and in vitro experiments using ectopic expression of wild-type and mutant Kv4.3 were used to study protein localization, stability, and channel activity by patch-clamping. RESULTS: We detected a T352P mutation in the third extracellular loop of the voltage-gated potassium channel KCND3 that cosegregated with the disease phenotype in our original family. We identified 2 more novel missense mutations in the channel pore (M373I) and the S6 transmembrane domain (S390N) in 2 other ataxia families. T352P cerebellar autopsy material showed severe Purkinje cell degeneration, with abnormal intracellular accumulation and reduced protein levels of Kv4.3 in their soma. Ectopic expression of all mutant proteins in HeLa cells revealed retention in the endoplasmic reticulum and enhanced protein instability, in contrast to wild-type Kv4.3 that was localized on the plasma membrane. The regulatory ß subunit Kv channel interacting protein 2 was able to rescue the membrane localization and the stability of 2 of the 3 mutant Kv4.3 complexes. However, this either did not restore the channel function of the membrane-located mutant Kv4.3 complexes or restored it only partially. INTERPRETATION: KCND3 mutations cause SCA19 by impaired protein maturation and/or reduced channel function.


Assuntos
Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Canais de Potássio Shal/genética , Degenerações Espinocerebelares/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Cicloeximida/farmacologia , Análise Mutacional de DNA , Progressão da Doença , Saúde da Família , Feminino , Estudos de Associação Genética , Genótipo , Células HEK293/metabolismo , Células HeLa/patologia , Humanos , Proteínas Luminescentes/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Técnicas de Patch-Clamp , Inibidores da Síntese de Proteínas/farmacologia , Coloração pela Prata , Degenerações Espinocerebelares/patologia , Fatores de Tempo , Transfecção
19.
Brain ; 135(Pt 10): 2994-3004, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22964162

RESUMO

Spastic paraplegia type 7 is an autosomal recessive neurodegenerative disorder mainly characterized by progressive bilateral lower limb spasticity and referred to as a form of hereditary spastic paraplegia. Additional disease features may also be observed as part of a more complex phenotype. Many different mutations have already been identified, but no genotype-phenotype correlations have been found so far. From a total of almost 800 patients referred for testing, we identified 60 patients with mutations in the SPG7 gene. We identified 14 previously unreported mutations and detected a high recurrence rate of several earlier reported mutations. We were able to collect detailed clinical data for 49 patients, who were ranked based on a pure versus complex phenotype, ataxia versus no ataxia and missense versus null mutations. A generally complex phenotype occurred in 69% of all patients and was associated with a younger age at onset (trend with P = 0.07). Ataxia was observed in 57% of all patients. We found that null mutations were associated with the co-occurrence of cerebellar ataxia (trend with P = 0.06). The c.1409 G > A (p.Arg470Gln) mutation, which was found homozygously in two sibs, was associated with a specific complex phenotype that included predominant visual loss due to optical nerve atrophy. Neuropathology in one of these cases showed severe degeneration of the optic system, with less severe degeneration of the ascending tracts of the spinal cord and cerebellum. Other disease features encountered in this cohort included cervical dystonia, vertical gaze palsy, ptosis and severe intellectual disability. In this large Dutch cohort, we seem to have identified the first genotype-phenotype correlation in spastic paraplegia type 7 by observing an association between the cerebellar phenotype of spastic paraplegia type 7 and SPG7 null alleles. An overlapping phenotypic presentation with its biological counterpart AFG3L2, which when mutated causes spinocerebellar ataxia type 28, is apparent and possibly suggests that abnormal levels of the SPG7 protein impact the function of the mitochondrial ATPases associated with diverse cellular activities-protease complex (formed by SPG7 and AFG3L2) in the cerebellum. In addition, a missense mutation in exon 10 resulted in predominant optical nerve atrophy, which might suggest deleterious interactions of this SPG7 variant with its substrate OPA1, the mutated gene product in optic atrophy type 1. Functional studies are required to further investigate these interactions.


Assuntos
Angiopoietinas/genética , Estudos de Associação Genética , Metaloendopeptidases/genética , Mutação/genética , Paraplegia Espástica Hereditária/genética , ATPases Associadas a Diversas Atividades Celulares , Proteína 6 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Estudos de Coortes , Genótipo , Humanos , Países Baixos , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/fisiopatologia , Fenótipo , Paraplegia Espástica Hereditária/fisiopatologia
20.
J Neurosurg ; 138(5): 1263-1272, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308486

RESUMO

OBJECTIVE: Meningiomas are frequently occurring, often benign intracranial tumors. Molecular fluorescence can be used to intraoperatively identify residual meningioma tissue and optimize safe resection; however, currently no clinically approved agent is available for this specific tumor type. In meningiomas, vascular endothelial growth factor α (VEGFα) is upregulated, and this biomarker could be targeted with bevacizumab-IRDye800CW, a fluorescent agent that is already clinically applied for the resection of other tumors and neoplasms. Here, the authors investigated the feasibility of using bevacizumab-IRDye800CW to target VEGFα in a CH-157MN xenografted mouse model. METHODS: Five mice with CH-157MN xenografts with volumes of 500 mm3 were administered intravenous bevacizumab-IRDye800CW. Mice were imaged in vivo at 24 hours, 48 hours, and 72 hours after injection with the FMT2500 fluorescence imaging system. Biodistribution was determined ex vivo using the Pearl fluorescent imager at 72 hours after injection. To mimic a clinical scenario, 2 animals underwent postmortem xenograft resection using both white-light and fluorescence guidance. Lastly, fresh and frozen human meningioma specimens were incubated ex vivo with bevacizumab-IRDye800CW, stained with anti-VEGFα, and microscopically examined. RESULTS: In vivo, tumors fluoresced at all time points after tracer administration and background fluorescence decreased with time. Ex vivo analyses of tracer biodistribution showed the highest fluorescence in resected tumor tissue. Brain, skull, and muscle tissue showed very low fluorescence. Microscopically, fluorescence was observed in the cytoplasm and was correlated with VEGFα expression patterns. During postmortem surgery, both the tumor bulk and a small tumor remnant were detected. Bevacizumab-IRDye800CW bound specifically to all tested human meningioma samples, as indicated by a high fluorescent signal in the tumor bulk compared with the surrounding healthy dura mater. CONCLUSIONS: Bevacizumab-IRDye800CW showed meningioma specificity, as illustrated by high VEGFα-mediated uptake in the meningioma xenograft mouse model. Small tumor lesions were detected using fluorescence guidance. Thus, the next step will be to assess the feasibility of using already available clinical grade bevacizumab-IRDye800CW to optimize meningioma resection in a human trial.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Animais , Camundongos , Bevacizumab , Meningioma/cirurgia , Fator A de Crescimento do Endotélio Vascular , Estudos de Viabilidade , Distribuição Tecidual , Corantes , Neoplasias Meníngeas/cirurgia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa