Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Invest New Drugs ; 38(3): 899-908, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31441020

RESUMO

Adrenocortical carcinoma (ACC) is an aggressive endocrine cancer with few molecular predictors of malignancy and survival, especially in paediatric patients. Stathmin 1 (STMN1) regulates microtubule dynamics and has been involved in the malignant phenotype of cancer cells. Recently, it was reported that STMN1 is highly expressed in ACC patients, and STMN1 silencing reduces the clonogenicity and migration of ACC cell lines. However, the prognostic significance of STMN1 and its therapeutic potential remain undefined in ACC. In the present study, STMN1 mRNA levels were significantly higher (p < 0.05) in ACC patients, especially in an advanced stage, and correlated with BUB1B and PINK1 expression, the prognostic-related genes in ACC. In paediatric tumours, high STMN1 expression was observed in both adrenocortical carcinoma and adrenocortical adenoma patients. Among the adult malignant tumours, STMN1 level was an independent predictor of survival outcomes (overall survival: hazard ratio = 6.08, p = 0.002; disease-free survival: hazard ratio = 4.65, p < 0.0001). Paclitaxel, a microtubule-stabilizing drug, reduces the activation of STMN1 and significantly decreases cell migration and invasion in ACC cell lines and ACC cells from secondary cell culture (all p < 0.0001). In summary, STMN1 expression may be of great value to clinical and pathological findings in therapeutic trials and deserves future studies in ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/mortalidade , Movimento Celular/genética , Estatmina/genética , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/patologia , Adulto , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Pré-Escolar , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Paclitaxel/uso terapêutico , Prognóstico , RNA Mensageiro/genética
2.
Discov Oncol ; 12(1): 23, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35201460

RESUMO

BACKGROUND: Adrenocortical carcinomas (ACC) are rare and aggressive cancer. Our previous study has revealed that the transcription factor 21, TCF21, is downregulated in ACC and regulates steroidogenic factor 1 (SF-1) binding to the SF-1 E-box promoter. In addition, it could be found that TCF21 is a predictor of overall survival (OS) in adult carcinomas. METHODS: In this study, it was investigated the correlation between TCF21 expression and the promoter methylation status in adrenocortical tumor cells, carcinomas and adenoma. The biological function and potential molecular mechanism of TCF21 restoration in migration and invasion of ACC cells was examined. RESULTS: We could be demonstrated a negative correlation between the level of TCF21 expression and methylation of its promoter in adenoma and carcinoma cells indicating the epigenetic control of TCF21 expression. It was also demonstrated that the expression of TCF21 inhibits migration and invasion in the ACC cell line, H295R cells, using plasmid transfection to express TCF21. Furthermore, it could be investigated the TCF21 function as tumor suppressor probably through Kisspeptin 1 (KISS-1) expression and epithelial-mesenchymal transition (EMT) reversion, as well as the modulation of several metalloproteinases in ACC cells. CONCLUSIONS: Our results suggest that enhancement of TCF21 expression levels may be a potential strategy to revert invasive abilities in adrenocortical carcinomas.

3.
Clinics (Sao Paulo) ; 73(suppl 1): e473s, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30208164

RESUMO

This review summarizes key knowledge regarding the development, growth, and growth disorders of the adrenal cortex from a molecular perspective. The adrenal gland consists of two distinct regions: the cortex and the medulla. During embryological development and transition to the adult adrenal gland, the adrenal cortex acquires three different structural and functional zones. Significant progress has been made in understanding the signaling and molecules involved during adrenal cortex zonation. Equally significant is the knowledge obtained regarding the action of peptide factors involved in the maintenance of zonation of the adrenal cortex, such as peptides derived from proopiomelanocortin processing, adrenocorticotropin and N-terminal proopiomelanocortin. Findings regarding the development, maintenance and growth of the adrenal cortex and the molecular factors involved has improved the scientific understanding of disorders that affect adrenal cortex growth. Hypoplasia, hyperplasia and adrenocortical tumors, including adult and pediatric adrenocortical adenomas and carcinomas, are described together with findings regarding molecular and pathway alterations. Comprehensive genomic analyses of adrenocortical tumors have shown gene expression profiles associated with malignancy as well as methylation alterations and the involvement of miRNAs. These findings provide a new perspective on the diagnosis, therapeutic possibilities and prognosis of adrenocortical disorders.


Assuntos
Doenças do Córtex Suprarrenal/fisiopatologia , Córtex Suprarrenal/crescimento & desenvolvimento , Desenvolvimento Embrionário/fisiologia , Córtex Suprarrenal/embriologia , Córtex Suprarrenal/fisiologia , Humanos
4.
Clinics ; 73(supl.1): e473s, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-952822

RESUMO

This review summarizes key knowledge regarding the development, growth, and growth disorders of the adrenal cortex from a molecular perspective. The adrenal gland consists of two distinct regions: the cortex and the medulla. During embryological development and transition to the adult adrenal gland, the adrenal cortex acquires three different structural and functional zones. Significant progress has been made in understanding the signaling and molecules involved during adrenal cortex zonation. Equally significant is the knowledge obtained regarding the action of peptide factors involved in the maintenance of zonation of the adrenal cortex, such as peptides derived from proopiomelanocortin processing, adrenocorticotropin and N-terminal proopiomelanocortin. Findings regarding the development, maintenance and growth of the adrenal cortex and the molecular factors involved has improved the scientific understanding of disorders that affect adrenal cortex growth. Hypoplasia, hyperplasia and adrenocortical tumors, including adult and pediatric adrenocortical adenomas and carcinomas, are described together with findings regarding molecular and pathway alterations. Comprehensive genomic analyses of adrenocortical tumors have shown gene expression profiles associated with malignancy as well as methylation alterations and the involvement of miRNAs. These findings provide a new perspective on the diagnosis, therapeutic possibilities and prognosis of adrenocortical disorders.


Assuntos
Humanos , Córtex Suprarrenal/crescimento & desenvolvimento , Doenças do Córtex Suprarrenal/fisiopatologia , Desenvolvimento Embrionário/fisiologia , Córtex Suprarrenal/embriologia , Córtex Suprarrenal/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa