Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 153(3): 1898, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37002100

RESUMO

Increasing the number of closely packed air bubbles immersed in water changes the frequency of the Minnaert resonance. The collective interactions between bubbles in a small ensemble are primarily in the same phase, causing them to radiate a spherically symmetric field that peaks at a frequency lower than the Minnaert resonance for a single bubble. In contrast, large periodic arrays include bubbles that are further apart than half of the wavelength such that collective resonances have bubbles oscillating in opposite phases, ultimately creating a fundamental resonance at a frequency higher than the single-bubble Minnaert resonance. This work investigates the transition in resonance behavior using a modal analysis of a mass-spring system and a boundary element method. The computational complexity of the full-wave solver is significantly reduced to a linear dependence on the number of bubbles in a rectangular array. The simulated acoustic fields confirm the initial downshift in resonance frequency and the strong influence of collective resonances when the array has hundreds of bubbles covering more than half of the wavelength. These results are essential in understanding the low-frequency resonance characteristics of bubble ensembles, which have important applications in diverse fields such as underwater acoustics, quantum physics, and metamaterial design.

2.
J Comput Chem ; 43(10): 674-691, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35201634

RESUMO

The Poisson-Boltzmann equation offers an efficient way to study electrostatics in molecular settings. Its numerical solution with the boundary element method is widely used, as the complicated molecular surface is accurately represented by the mesh, and the point charges are accounted for explicitly. In fact, there are several well-known boundary integral formulations available in the literature. This work presents a generalized expression of the boundary integral representation of the implicit solvent model, giving rise to new forms to compute the electrostatic potential. Moreover, it proposes a strategy to build efficient preconditioners for any of the resulting systems, improving the convergence of the linear solver. We perform systematic benchmarking of a set of formulations and preconditioners, focusing on the time to solution, matrix conditioning, and eigenvalue spectrum. We see that the eigenvalue clustering is a good indicator of the matrix conditioning, and show that they can be easily manipulated by scaling the preconditioner. Our results suggest that the optimal choice is problem-size dependent, where a simpler direct formulation is the fastest for small molecules, but more involved second-kind equations are better for larger problems. We also present a fast Calderón preconditioner for first-kind formulations, which shows promising behavior for future analysis. This work sets the basis towards choosing the most convenient boundary integral formulation of the Poisson-Boltzmann equation for a given problem.


Assuntos
Eletricidade Estática , Solventes
3.
J Acoust Soc Am ; 152(2): 1003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36050189

RESUMO

Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.


Assuntos
Benchmarking , Transdutores , Simulação por Computador , Crânio/diagnóstico por imagem , Ultrassonografia/métodos
4.
J Acoust Soc Am ; 149(4): 2477, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33940878

RESUMO

The acoustic resonances of radiatively damped air bubbles in water near reflecting boundaries are investigated by representing the bubble and its image by two bubbles in a full space, ensonified by two incident fields. Results obtained using an analytic monopole theory are compared with those of a coupled spherical harmonic technique and a boundary element method. Near a rigid boundary, the resonance frequency is reduced, and the response characteristics are determined by the predominant monopolar character of the individual bubble motion, with small changes in peak amplitude and Q. Near a sound-soft boundary, a higher frequency proximity resonance is observed. The monopole field is cancelled out, and the response is determined by higher-order scattering modes, giving very high values of Q. While the individual bubble scattering level increases significantly, the overall scattering is less than for two uncoupled bubbles. For bubble separations of 8-28 radii, all three approaches predict essentially identical results for both boundary types. For bubble separations less than one radius, the monopole theory, which does not include higher-order scattering modes, diverges from the boundary element and coupled spherical harmonic methods, whose high-accuracy determinations of resonance frequencies and amplitudes agree to within 0.1%.

5.
J Acoust Soc Am ; 150(1): 441, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340504

RESUMO

The numerical simulation of weakly nonlinear ultrasound is important in treatment planning for focused ultrasound (FUS) therapies. However, the large domain sizes and generation of higher harmonics at the focus make these problems extremely computationally demanding. Numerical methods typically employ a uniform mesh fine enough to resolve the highest harmonic present in the problem, leading to a very large number of degrees of freedom. This paper proposes a more efficient strategy in which each harmonic is approximated on a separate mesh, the size of which is proportional to the wavelength of the harmonic. The increase in resolution required to resolve a smaller wavelength is balanced by a reduction in the domain size. This nested meshing is feasible owing to the increasingly localised nature of higher harmonics near the focus. Numerical experiments are performed for FUS transducers in homogeneous media to determine the size of the meshes required to accurately represent the harmonics. In particular, a fast volume potential approach is proposed and employed to perform convergence experiments as the computation domain size is modified. This approach allows each harmonic to be computed via the evaluation of an integral over the domain. Discretising this integral using the midpoint rule allows the computations to be performed rapidly with the FFT. It is shown that at least an order of magnitude reduction in memory consumption and computation time can be achieved with nested meshing. Finally, it is demonstrated how to generalise this approach to inhomogeneous propagation domains.

6.
J Acoust Soc Am ; 138(5): 2726-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26627749

RESUMO

High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton-Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa