RESUMO
Despite reptile trypanosomes forming a large group, the majority of species descriptions are data deficient, lacking key characteristic data and supporting molecular data. Reptile hosts show potential to facilitate transmission of zoonotic trypanosomiases and offer key information to understanding the genus of Trypanosoma. Several species of squamates from different localities in South Africa were screened molecularly and microscopically for trypanosomes in the present study. Based on the combination of morphological and molecular analyses, two new species of Trypanosoma, Trypanosoma (Squamatrypanum) ndumoensis n. sp. and Trypanosoma (Trypanosoma) tokoloshi n. sp., infecting South African cordylid lizards (Cordylidae: Cordylinae) are described in this study. The first molecular data for a South African reptile trypanosome is provided herewith.
Assuntos
Lagartos , Trypanosoma , Tripanossomíase , Animais , África do Sul , Filogenia , Trypanosoma/genética , Tripanossomíase/veterináriaRESUMO
A new haemogregarine species Hepatozoon affluomaloti sp. n. is described from erythrocytes in the peripheral blood of crag lizards Pseudocordylus melanotus (Smith) and Pseudocordylus subviridis (Smith) (Sauria: Cordylidae) from mountainous regions in the Eastern Free State, South Africa. This species can be distinguished from all other congeners based on its large size, staining properties and life cycle development in its vector, Culex (Afroculex) lineata (Theobald) (Diptera: Culicidae). Mature gamonts stain mostly uniformly pinkish-purple with Giemsa, sometimes containing darker azurophilic granules anterior and posterior to the nucleus. The reflexed posterior extremity of the gamont stage sometimes stains slightly deeper purple and the nucleus is dense and placed in the posterior third of the parasite body. Merogonic stages of this haemogregarine occur in the liver tissues of P. melanotus with dizoic meronts. Macromeronts contains 2-7 macromerozoites and micromeronts contains 9-24 micromerozoites. Sporogonic developmental stages found in the proposed final host and vector, C. lineata, include large oocysts, measuring 54 × 48 µm on average. Sporulating oocysts with 8 nuclei are present in mosquitoes 6-7 days post-feeding on infected lizards. Sporocysts with mature sporozoites measure 31.0 × 21.8 µm on average and each contains 2-8 large sporozoites. It is suggested that transmission of infective sporozoites is achieved through predation of lizards on mosquitoes.
RESUMO
Two new haemogregarine species, Hepatozoon langii n. sp. and Hepatozoon vacuolatus n. sp., are described from the pe-ripheral blood of the high altitude crag lizard, Pseudocordylus langi, collected between October 2006 and April 2009 from the North Eastern Drakensberg, Eastern Free State. Hepatozoon langii n. sp. has maturing and mature gamonts that appear encapsulated and have narrow, curved tails. Their cytoplasm stains pinkish-purple with Giemsa, while their nuclei are pur-ple stained with stranded chromatin. Mature gamonts measure 19.1 ± 1.0 (15.4-28.1) µm long by 6.2 ± 1.1 (3.5-7.9) µm wide. Hepatozoon vacuolatus n. sp. gamonts are mostly broader at one pole than the other, have bluish-pink cytoplasm characterised by distinctive rounded and oval vacuoles, and demonstrate pink granules with Giemsa staining. Nuclei stain purple and are mainly coarsely granular. Mature gamonts measure 16.5 ± 1.0 (14.7 - 17.6) µm long by 5.9 ± 1.2 (4.0 - 7.7) µm wide. Both species parasitize erythroblasts, as well as erythrocytes and can dehaemoglobinize the cytoplasm of their host cells. Hepatozoon langii n. sp occurred in the absence of H. vacuolatus n. sp., but the latter haemogregarine always formed mixed infections with the former; no stages intermediate between the two haemogregarine types were observed.
Assuntos
Coccidiose/veterinária , Eucoccidiida/classificação , Eucoccidiida/fisiologia , Lagartos , Animais , Coccidiose/sangue , Coccidiose/epidemiologia , Coccidiose/parasitologia , Eucoccidiida/citologia , Feminino , Lagartos/parasitologia , Masculino , Prevalência , África do Sul/epidemiologiaRESUMO
BACKGROUND: Saurian malaria parasites are diverse apicomplexan blood parasites including the family Plasmodiidae Mesnil, 1903, and have been studied since the early 1900s. Currently, at least 27 species of Plasmodium are recorded in African lizards, and to date only two species, Plasmodium zonuriae (Pienaar, 1962) and Plasmodium cordyli Telford, 1987, have been reported from the African endemic family Cordylidae. This paper presents a description of a new malaria parasite in a cordylid lizard and provides a phylogenetic hypothesis for saurian Plasmodium species from South Africa. Furthermore, it provides a tabular review of the Plasmodium species that to date have been formally described infecting species of African lizards. METHODS: Blood samples were collected from 77 specimens of Pseudocordylus melanotus (A. Smith, 1838) from Platberg reserve in the Eastern Free State, and two specimens of Cordylus vittifer (Reichenow, 1887) from the Roodewalshoek conservancy in Mpumalanga (South Africa). Blood smears were Giemsa-stained, screened for haematozoa, specifically saurian malaria parasites, parasite stages were photographed and measured. A small volume was also preserved for TEM studies. Plasmodium and Haemoproteus primer sets, with a nested-polymerase chain reaction (PCR) protocol, were employed to target a fragment of the cytochrome-b (cyt-b) gene region. Resulting sequences of the saurian Plasmodium species' isolates were compared with each other and to other known Plasmodium spp. sequences in the GenBank database. RESULTS: The presence of P. zonuriae in both specimens of the type lizard host C. vittifer was confirmed using morphological characteristics, which subsequently allowed for the species' molecular characterisation. Of the 77 P. melanotus, 44 were parasitised by a Plasmodium species, which when compared morphologically to other African saurian Plasmodium spp. and molecularly to P. zonuriae, supported its description as a new species Plasmodium intabazwe n. sp. CONCLUSIONS: This is the first morphological and molecular account of Plasmodium species within the African endemic family Cordylidae from South Africa. The study highlights the need for molecular analysis of other cordylid Plasmodium species within Africa. Future studies should also include elucidating of the life-cycles of these species, thus promoting the use of both morphological and molecular characteristics in species descriptions of saurian malaria parasites.