Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 148(5): 2841, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33261405

RESUMO

Ocean acoustic tomography is traditionally performed using the travel-time variations of an acoustic path between a source and a receiver. In the context of shallow-water tomography and multipath propagation, the different acoustic paths can be correctly identified if the source and the receiver are arrays of transducers. Here, a double-beamforming algorithm can be applied to extract a collection of eigenbeams from the raw acoustic dataset. In this study, four observables can be measured for each eigenbeam: the travel-time, the amplitude, and the emitting and receiving angles. In this study, the sensitivity kernel (SK) formulation is used to establish a quantitative relation between a perturbation of the surface of an ultrasonic waveguide and the emitting and receiving angles of each eigenbeam. This theoretical relation is experimentally demonstrated using a forward model experiment designed to measure the SK. The SK formulation is then used in a second experiment to quantitatively and dynamically image the propagation of a surface wave traveling across the surface of the waveguide. The inversion results show that the quality of the joint inversion of the emitting and receiving angles is higher than previous results based on amplitude or travel-time observables.

2.
J Acoust Soc Am ; 146(5): 3353, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31795667

RESUMO

Dynamic acoustic imaging of a surface wave propagating at an air-water interface is a complex task that is investigated here at the laboratory scale through an ultrasonic experiment in a shallow water waveguide. Using a double beamforming algorithm between two source-receiver arrays, the authors isolate and identify each multi-reverberated eigenbeam that interacts with the air-water and bottom interfaces. The waveguide transfer matrix is recorded 100 times per second while a low-amplitude gravity wave is generated by laser-induced breakdown at the middle of the waveguide, just above the water surface. The controlled, and therefore repeatable, breakdown results in a blast wave that interacts with the air-water interface, which creates ripples at the surface that propagate in both directions. The amplitude perturbations of each ultrasonic eigenbeam are measured during the propagation of the gravity-capillary wave. Inversion of the surface deformation is performed from the amplitude variations of the eigenbeams using a diffraction-based sensitivity kernel approach. The accurate ultrasonic imaging of the displacement of the air-water interface is compared to simultaneous measurements with an optical camera, which provides independent validation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa