Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949092

RESUMO

The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.

2.
Planta ; 251(4): 75, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146566

RESUMO

MAIN CONCLUSION: Carbonic anhydrases CA1 and CA4 attenuate plant immunity and can contribute to altered disease resistance levels in response to changing atmospheric CO2 conditions. ß-Carbonic anhydrases (CAs) play an important role in CO2 metabolism and plant development, but have also been implicated in plant immunity. Here we show that the bacterial pathogen Pseudomonas syringae and application of the microbe-associated molecular pattern (MAMP) flg22 repress CA1 and CA4 gene expression in Arabidopsis thaliana. Using the CA double-mutant ca1ca4, we provide evidence that CA1 and CA4 play an attenuating role in pathogen- and flg22-triggered immune responses. In line with this, ca1ca4 plants exhibited enhanced resistance against P. syringae, which was accompanied by an increased expression of the defense-related genes FRK1 and ICS1. Under low atmospheric CO2 conditions (150 ppm), when CA activity is typically low, the levels of CA1 transcription and resistance to P. syringae in wild-type Col-0 were similar to those observed in ca1ca4. However, under ambient (400 ppm) and elevated (800 ppm) atmospheric CO2 conditions, CA1 transcription was enhanced and resistance to P. syringae reduced. Together, these results suggest that CA1 and CA4 attenuate plant immunity and that differential CA gene expression in response to changing atmospheric CO2 conditions contribute to altered disease resistance levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Anidrases Carbônicas/genética , Resistência à Doença , Imunidade Vegetal , Pseudomonas syringae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
3.
Plant Cell ; 29(9): 2086-2105, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28827376

RESUMO

Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. To advance our understanding of the architecture and dynamic regulation of the JA gene regulatory network, we performed a high-resolution RNA-seq time series of methyl JA-treated Arabidopsis thaliana at 15 time points over a 16-h period. Computational analysis showed that methyl JA (MeJA) induces a burst of transcriptional activity, generating diverse expression patterns over time that partition into distinct sectors of the JA response targeting specific biological processes. The presence of transcription factor (TF) DNA binding motifs correlated with specific TF activity during temporal MeJA-induced transcriptional reprogramming. Insight into the underlying dynamic transcriptional regulation mechanisms was captured in a chronological model of the JA gene regulatory network. Several TFs, including MYB59 and bHLH27, were uncovered as early network components with a role in pathogen and insect resistance. Analysis of subnetworks surrounding the TFs ORA47, RAP2.6L, MYB59, and ANAC055, using transcriptome profiling of overexpressors and mutants, provided insights into their regulatory role in defined modules of the JA network. Collectively, our work illuminates the complexity of the JA gene regulatory network, pinpoints and validates previously unknown regulators, and provides a valuable resource for functional studies on JA signaling components in plant defense and development.


Assuntos
Arabidopsis/genética , Ciclopentanos/metabolismo , Redes Reguladoras de Genes , Oxilipinas/metabolismo , Acetatos/farmacologia , Animais , Sequência de Bases , Ciclopentanos/farmacologia , DNA de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes de Plantas , Insetos/fisiologia , Família Multigênica , Motivos de Nucleotídeos/genética , Oxilipinas/farmacologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
4.
Mol Plant Microbe Interact ; 27(7): 603-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24654978

RESUMO

Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.


Assuntos
Arabidopsis/microbiologia , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas syringae/fisiologia , Serina Endopeptidases/metabolismo , Solanum lycopersicum/microbiologia , Regulação Enzimológica da Expressão Gênica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/imunologia , Serina Endopeptidases/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Curr Biol ; 29(22): 3913-3920.e4, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31668625

RESUMO

The root microbiome consists of commensal, pathogenic, and plant-beneficial microbes [1]. Most members of the root microbiome possess microbe-associated molecular patterns (MAMPs) similar to those of plant pathogens [2]. Their recognition can lead to the activation of host immunity and suppression of plant growth due to growth-defense tradeoffs [3, 4]. We found that 42% of the tested root microbiota, including the plant growth-promoting rhizobacteria Pseudomonas capeferrum WCS358 [5, 6] and Pseudomonas simiae WCS417 [6, 7], are able to quench local Arabidopsis thaliana root immune responses that are triggered by flg22 [8], an immunogenic epitope of the MAMP flagellin [9], suggesting that this is an important function of the root microbiome. In a screen for WCS358 mutants that lost their capacity to suppress flg22-induced CYP71A12pro:GUS MAMP-reporter gene expression, we identified the bacterial genes pqqF and cyoB in WCS358, which are required for the production of gluconic acid and its derivative 2-keto gluconic acid. Both WCS358 mutants are impaired in the production of these organic acids and consequently lowered their extracellular pH to a lesser extent than wild-type WCS358. Acidification of the plant growth medium similarly suppressed flg22-induced CYP71A12pro:GUS and MYB51pro:GUS expression, and the flg22-mediated oxidative burst, suggesting a role for rhizobacterial gluconic acid-mediated modulation of the extracellular pH in the suppression of root immunity. Rhizosphere population densities of the mutants were significantly reduced compared to wild-type. Collectively, these findings show that suppression of immune responses is an important function of the root microbiome, as it facilitates colonization by beneficial root microbiota.


Assuntos
Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Concentração de Íons de Hidrogênio , Microbiota/genética , Microbiota/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Pseudomonas/patogenicidade , Rizosfera
6.
Plant Physiol ; 135(2): 969-77, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15181208

RESUMO

In resurrection plants and yeast, trehalose has a function in stress protection, but the absence of measurable amounts of trehalose in other plants precludes such a function. The identification of a trehalose biosynthetic pathway in angiosperms raises questions on the function of trehalose metabolism in nonresurrection plants. We previously identified a mutant in the Arabidopsis trehalose biosynthesis gene AtTPS1. Plants homozygous for the tps1 mutation do not develop mature seeds (Eastmond et al., 2002). AtTPS1 expression analysis and the spatial and temporal activity of its promoter suggest that this gene is active outside the seed-filling stage of development as well. A generally low expression is observed in all organs analyzed, peaking in metabolic sinks such as flower buds, ripening siliques, and young rosette leaves. The arrested tps1/tps1 embryonic state could be rescued using a dexamethasone-inducible AtTPS1 expression system enabling generation of homozygous mutant plants. When depleted in AtTPS1 expression, such mutant plants show reduced root growth, which is correlated with a reduced root meristematic region. Moreover, tps1/tps1 plants are retarded in growth and remain generative during their lifetime. Absence of Trehalose-6-Phosphate Synthase 1 in Arabidopsis plants precludes transition to flowering.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Glucosiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Flores/enzimologia , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Mutação , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Análise de Sequência de DNA
7.
Plant J ; 29(2): 225-35, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11851922

RESUMO

Despite the recent discovery that trehalose synthesis is widespread in higher plants very little is known about its physiological significance. Here we report on an Arabidopsis mutant (tps1), disrupted in a gene encoding the first enzyme of trehalose biosynthesis (trehalose-6-phosphate synthase). The tps1 mutant is a recessive embryo lethal. Embryo morphogenesis is normal but development is retarded and stalls early in the phase of cell expansion and storage reserve accumulation. TPS1 is transiently up-regulated at this same developmental stage and is required for the full expression of seed maturation marker genes (2S2 and OLEOSN2). Sucrose levels also increase rapidly in seeds during the onset of cell expansion. In Saccharomyces cerevisiae trehalose-6-phosphate (T-6-P) is required to regulate sugar influx into glycolysis via the inhibition of hexokinase and a deficiency in TPS1 prevents growth on sugars (Thevelein and Hohmann, 1995). The growth of Arabidopsis tps1-1 embryos can be partially rescued in vitro by reducing the sucrose level. However, T-6-P is not an inhibitor of AtHXK1 or AtHXK2. Nor does reducing hexokinase activity rescue tps1-1 embryo growth. Our data establish for the first time that an enzyme of trehalose metabolism is essential in plants and is implicated in the regulation of sugar metabolism/embryo development via a different mechanism to that reported in S. cerevisiae.


Assuntos
Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Sementes/metabolismo , Trealose/análogos & derivados , Trealose/biossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Hexoquinase/metabolismo , Mutação , Sementes/genética , Sementes/crescimento & desenvolvimento , Sacarose/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa