Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(39): 21222-21230, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37748772

RESUMO

We present an approach for detecting thiol analytes through a self-propagating amplification cycle that triggers the macroscopic degradation of a hydrogel scaffold. The amplification system consists of an allylic phosphonium salt that upon reaction with the thiol analyte releases a phosphine, which reduces a disulfide to form two thiols, closing the cycle and ultimately resulting in exponential amplification of the thiol input. When integrated in a disulfide cross-linked hydrogel, the amplification process leads to physical degradation of the hydrogel in response to thiol analytes. We developed a numerical model to predict the behavior of the amplification cycle in response to varying concentrations of thiol triggers and validated it with experimental data. Using this system, we were able to detect multiple thiol analytes, including a small molecule probe, glutathione, DNA, and a protein, at concentrations ranging from 132 to 0.132 µM. In addition, we discovered that the self-propagating amplification cycle could be initiated by force-generated molecular scission, enabling damage-triggered hydrogel destruction.

2.
Langmuir ; 39(31): 10913-10924, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37492983

RESUMO

We report a systematic study of the gelation behavior of nBA gelators in xylene, with odd and even n-methylene spacers between the amide groups (n = 5-10) and 17 carbons at each end. The melting temperatures (Tm0) of nBA gels are obtained from fitting our DSCN(T) model to the experimental DSC data. The found Tm0 of nBA gels is about 35 °C lower than Tm0 of the pure nBA gelators. This is reasonably well explained by a simple model combining theories of Flory-Huggins and Gibbs free energy of melting (FHM model). We attribute this depression to an increase in entropy upon melting of the gel due to mixing with the solvent. The odd-even alternation in Tm0 of nBA gels, which was also found for the nBA gelators, indicates that the solid structures inside the gels are somewhat similar. This was studied using XRD: similar 00l reflections were found in the XRD patterns of all nBA gels and their nBA gelators. For even nBA gels, the same reflections in the 19-25° (2θ) region confirm that the sheetlike supramolecular structure of the gels is analogous to the lamellar structure of the solid gelators. For odd nBA gels, a slight difference in the reflections around 20-25° (2θ) implies a somewhat different side-by-side packing of odd nBA gels compared to the solid state. This variation is found for all the odd gels, and indeed, they show distinctly different morphologies compared to the even nBA gels. The possible effect of this on the rheological properties is discussed using some inspiration from the Halpin-Tsai model for composites where nBA gels are considered to be analogous to composite materials. The change of the storage modulus (G') with the shape factor of woven fibers and sheets in nBA gels (20 wt %) indicates that a rheological odd-even effect might indeed be present.

3.
Langmuir ; 39(34): 12182-12195, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578393

RESUMO

This study intends to develop design rules for binary mixture of gelators that govern their assembly behavior and subsequently explore the impact of their supramolecular assembly patterns on the gels' rheological properties. To achieve these goals, nBA gelators with odd and even parities [n-methylene spacers between the amide groups (n = 5-10) and 17 carbons at each end] were blended at different ratios. Such bisamides with simple structures were selected to study because their different spacer lengths offer the possibility to have matching or non-matching hydrogen bonds. The results show that the assembly behavior of binary mixtures of bisamide gelators is the same in the solid and gel states. Binary mixtures of gelators, which only differ two methylene moieties in the spacer length, form compounds and co-assemble into fibers and sheets observed for (5BA)1(7BA)1 and (6BA)1(8BA)1 mixtures, respectively. Binary gelator mixtures of the same parity and a larger spacer length difference still lead to mixing for the odd parity couple (5BA)1(9BA)1), but to partial phase separation for the even parity mixture (6BA)1(10BA)1. Binary mixtures of gelators of different parities gave complete phase separation in the solid state, and self-sorted gels consisting of discrete fibers and sheets in the gels of (5BA)3(6BA)1 and (5BA)3(10BA)1. The even-even binary gels (20 wt %) consisting of co-assembled sheets show higher G' than odd-odd binary gels (20 wt %) consisting of co-assembled fibers. In general, the self-sorting of odd and even molecules into the separate primary structures results in a dramatic decrease of G' compared to the co-assembled gels (20 wt %), except for (5BA)1(9BA)1 gel (20 wt %). It might be due to larger woven spheres in (5BA)1(9BA)1 gel (20 wt %), which probably have a less entangled gel network.

4.
Angew Chem Int Ed Engl ; 62(43): e202310162, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37671694

RESUMO

Living organisms are capable of dynamically changing their structures for adaptive functions through sophisticated reaction-diffusion processes. Here we show how active supramolecular hydrogels with programmable lifetimes and macroscopic structures can be created by relying on a simple reaction-diffusion strategy. Two hydrogel precursors (poly(acrylic acid) PAA/CaCl2 and Na2 CO3 ) diffuse from different locations and generate amorphous calcium carbonate (ACC) nanoparticles at the diffusional fronts, leading to the formation of hydrogel structures driven by electrostatic interactions between PAA and ACC nanoparticles. Interestingly, the formed hydrogels are capable of autonomously disintegrating over time because of a delayed influx of electrostatic-interaction inhibitors (NaCl). The hydrogel growth process is well explained by a reaction-diffusion model which offers a theoretical means to program the dynamic growth of structured hydrogels. Furthermore, we demonstrate a conceptual access to dynamic information storage in soft materials using the developed reaction-diffusion strategy. This work may serve as a starting point for the development of life-like materials with adaptive structures and functionalities.

5.
Chemphyschem ; 22(21): 2256-2261, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288310

RESUMO

Properties such as shear modulus, gelation time, structure of supramolecular hydrogels are strongly dependent on self-assembly, gelation triggering mechanism and processes used to form the gel. In our work we extend reported rheology analysis methodologies to pH-triggered supramolecular gels to understand structural insight using a model system based on N-N' Dibenzoyl-L-Cystine pH-triggered hydrogelator and Glucono-δ-Lactone as the trigger. We observed that Avrami growth model when applied to time-sweep rheological data of gels formed at lower trigger concentrations provide estimates of fractal dimension which agree well compared with visualization of the microstructure as seen via Confocal Laser Scanning Microscopy, for a range of gelator concentrations.

6.
Angew Chem Int Ed Engl ; 60(25): 14022-14029, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33821558

RESUMO

Dynamic regulation of chemical reactivity is important in many complex chemical reaction networks, such as cascade reactions and signal transduction processes. Signal responsive catalysts could play a crucial role in regulating these reaction pathways. Recently, supramolecular encapsulation was reported to regulate the activities of artificial catalysts. We present a host-guest chemistry strategy to modulate the activity of commercially available synthetic organocatalysts. The molecular container cucurbit[7]uril was successfully applied to change the activity of four different organocatalysts and one initiator, enabling up- or down-regulation of the reaction rates of four different classes of chemical reactions. In most cases CB[7] encapsulation results in catalyst inhibition, however in one case catalyst activation by binding to CB[7] was observed. The mechanism behind this unexpected behavior was explored by NMR binding studies and pKa measurements. The catalytic activity can be instantaneously switched during operation, by addition of either supramolecular host or competitive binding molecules, and the reaction rate can be predicted with a kinetic model. Overall, this signal responsive system proves a promising tool to control catalytic activity.

7.
Soft Matter ; 16(41): 9406-9409, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33048095

RESUMO

The present work shows how transient supramolecular hydrogels can be formed by catalytically controlled molecular self-assembly. Catalysis formation of molecular gelators leads the self-assembly along a kinetically favored pathway, resulting in transient hydrogels. This work demonstrates an effective approach towards pathway-dependent supramolecular materials.

8.
Angew Chem Int Ed Engl ; 59(33): 14076-14080, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32395894

RESUMO

In cancer therapy, the selective targeting of cancer cells while avoiding side effects to normal cells is still full of challenges. Here, we developed dual-functionalized crescent microgels, which selectively captured and killed lung cancer cells in situ without killing other cells. Crescent microgels with the inner surface of the cavity functionalized with antibody and containing glucose oxidase (GOX) in the gel matrix have been produced in a microfluidic device. These microgels presented high affinity and good selectivity to lung cancer cells and retained them inside the cavities for extended periods of time. Exposing the crescent hydrogels to physiological concentrations of glucose leads to the production of a locally high concentration of H2 O2 inside the microgels' cavities, due to the catalytic action by GOX inside the gel matrix, which selectively killed 90 % cancer cells entrapped in the microgel cavities without killing the cells outside. Our strategy to create synergy between different functions by incorporating them in a single microgel presents a novel approach to therapeutic systems, with potentially broad applications in smart materials, bioengineering and biomedical fields.


Assuntos
Apoptose , Microgéis , Neoplasias/patologia , Glucose Oxidase/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Angew Chem Int Ed Engl ; 59(22): 8601-8607, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32049410

RESUMO

Supramolecular assemblies are promising building blocks for the fabrication of functional soft devices for high-tech applications. However, there is a lack of effective methods for large-scale manipulation and integration of nano-sized supramolecular structures on soft substrate. Now, functional soft devices composed of micellar filaments and hydrogels can be created through a versatile approach involving guided dewetting, transfer-printing, and laser-assisted patterning. Such an approach enables unprecedented control over the location and alignment of the micellar filaments on hydrogel substrates. As examples, freely suspended micellar fishnets immobilized on hydrogels are formed, showing the capability of trapping and releasing micro-objects and the piconewton force sensitivity. By incorporating responsive moieties into hydrogels, shape-morphing actuators with micelle-controlled rolling directionality are constructed.

10.
Angew Chem Int Ed Engl ; 59(52): 23748-23754, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32914922

RESUMO

Reported here is a 2D, interfacial microcompartmentalization strategy governed by 3D phase separation. In aqueous polyethylene glycol (PEG) solutions doped with biotinylated polymers, the polymers spontaneously accumulate in the interfacial layer between the oil-surfactant-water interface and the adjacent polymer phase. In aqueous two-phase systems, these polymers first accumulated in the interfacial layer separating two polymer solutions and then selectively migrated to the oil-PEG interfacial layer. By using polymers with varying photopolymerizable groups and crosslinking rates, kinetic control and capture of spatial organisation in a variety of compartmentalized macroscopic structures, without the need of creating barrier layers, was achieved. This selective interfacial accumulation provides an extension of 3D phase separation towards synthetic compartmentalization, and is also relevant for understanding intracellular organisation.

11.
Angew Chem Int Ed Engl ; 59(12): 4830-4834, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31912568

RESUMO

Supramolecular structures with strain-stiffening properties are ubiquitous in nature but remain rare in the lab. Herein, we report on strain-stiffening supramolecular hydrogels that are entirely produced through the self-assembly of synthetic molecular gelators. The involved gelators self-assemble into semi-flexible fibers, which thereby crosslink into hydrogels. Interestingly, these hydrogels are capable of stiffening in response to applied stress, resembling biological intermediate filaments system. Furthermore, strain-stiffening hydrogel networks embedded with liposomes are constructed through orthogonal self-assembly of gelators and phospholipids, mimicking biological tissues in both architecture and mechanical properties. This work furthers the development of biomimetic soft materials with mechanical responsiveness and presents potentially enticing applications in diverse fields, such as tissue engineering, artificial life, and strain sensors.


Assuntos
Materiais Biomiméticos/síntese química , Hidrogéis/síntese química , Materiais Biomiméticos/química , Hidrogéis/química , Microscopia Confocal , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
J Am Chem Soc ; 141(7): 2847-2851, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30563317

RESUMO

Hierarchical compartmentalization through the bottom-up approach is ubiquitous in living cells but remains a formidable task in synthetic systems. Here we report on hierarchically compartmentalized supramolecular gels that are spontaneously formed by multilevel self-sorting. Two types of molecular gelators are formed in situ from nonassembling building blocks and self-assemble into distinct gel fibers through a kinetic self-sorting process; interestingly, these distinct fibers further self-sort into separated microdomains, leading to microscale compartmentalized gel networks. Such spontaneously multilevel self-sorting systems provide a "bottom-up" approach toward hierarchically structured functional materials and may play a role in intracellular organization.

13.
Small ; 15(8): e1804154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30698916

RESUMO

Herein, the micropatterning of supramolecular gels with oriented growth direction and controllable spatial dimensions by directing the self-assembly of small molecular gelators is reported. This process is associated with an acid-catalyzed formation of gelators from two soluble precursor molecules. To control the localized formation and self-assembly of gelators, micropatterned poly(acrylic acid) (PAA) brushes are employed to create a local and controllable acidic environment. The results show that the gel formation can be well confined in the catalytic surface plane with dimensions ranging from micro- to centimeter. Furthermore, the gels show a preferential growth along the normal direction of the catalytic surface, and the thickness of the resultant gel patterns can be easily controlled by tuning the grafting density of PAA brushes. This work shows an effective "bottom-up" strategy toward control over the spatial organization of materials and is expected to find promising applications in, e.g., microelectronics, tissue engineering, and biomedicine.


Assuntos
Géis/química , Engenharia Tecidual/métodos , Resinas Acrílicas/química , Catálise
14.
Small ; 15(13): e1804171, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30786154

RESUMO

This work examines the self-collimation effect of silk materials on fluorescence emission/detection. A macroscopic regulation strategy, coupled with meso-reconstruction and meso-functionalization, is adopted to amplify the fluorescence emission of organic fluorescent dyes (i.e., Rhodamine 6G (R6G)) using silk photonic crystal (PC) films. The fluorescence emission can be linearly enhanced or inhibited by a PC as a result of the photonic bandgap coupling with the excitation light and/or emission light. Depending on the design of the silk fluorescence collimator, the emission can reach 49.37 times higher than the control. The silk fluorescence collimator can be applied to achieve significant benefits: for instance, as a humidity sensor, it provides good reproducibility and a sensitivity of 28.50 a.u./% relative humidity, which is 80.78 times higher than the sensitivity of the control, and as a novel curtain, it raises the energy conversion efficiency of the semitransparent dye-sensitized solar cells (DSSCs) by 16%.

15.
Soft Matter ; 15(15): 3111-3121, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30758020

RESUMO

Gelled lyotropic liquid crystals (LLCs) are highly tunable multi-component materials. By studying a selection of low molecular weight gelators (LMWGs), we find gelators that form self-assembled gels in LLCs without influencing their phase boundaries. We studied the system H2O/NaCl-Genapol LA070 in the presence of (a) the organogelators 12-hydroxyoctadecanoic acid (12-HOA) and 1,3:2,4-dibenzylidene-d-sorbitol (DBS) and (b) the hydrogelators N,N'-dibenzoyl-l-cystine (DBC) and a tris-amido-cyclohexane derivative (HG1). Visual phase studies and oscillation shear frequency sweeps confirmed that 12-HOA acts as co-surfactant (stabilizing the lamellar Lα phase and destabilizing the hexagonal H1 phase), thus preventing gelation. Conversely, DBS was a potent gelator for LLCs, with the phase boundaries un-influenced by the presence of DBS; gelled lamellar Lα, and softly-gelled hexagonal H1 phases are formed. For the hydrogelator DBC, the LLC phase boundaries were only slightly altered, but no gelled LLCs were formed. For the hydrogelator HG1, however, the phase boundaries were unaffected while gelled lamellar Lα and softly-gelled hexagonal H1 phases were formed. Temperature-dependent rheology measurements demonstrated that by changing the DBS or the HG1 concentration, the sol-gel transition temperature of the gelled lamellar Lα phase can be adjusted such that (a) Tsol-gel is below the Lα-isotropic phase transition (DBS, HG1 mass fraction η = 0.0075) and (b) Tsol-gel is above the gelled Lα-isotropic phase transition (DBS, HG1 η = 0.015). This opens the possibility of temporal materials control by addressing phase transitions in different orders. As this system contains oil and water, both the organogelator DBS and the hydrogelator HG1 can gel these LLCs, but this clearly does not apply to all organogelators/hydrogelators. The study indicates that careful optimization of LMWGs is required to avoid interaction with the surfactant layer and to optimize the Tsol-gel value, which is important for the application of LMWGs in gelled LLCs.

16.
Soft Matter ; 15(21): 4276-4283, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31038130

RESUMO

Controlled diffusion, reaction and assembly of hydrogelator precursors can be used to create soft hydrogel objects of defined shape and size. In this study we show that controlling local reaction kinetics by means of pH, diffusion length and the concentrations of reactants allows control over the dimensions of formed supramolecular structures. By correlating a reaction diffusion model to experimental results, we show that the influence of all these control parameters can be unified using the Damköhler number, thus providing an easy-to-use relation between experimental parameters and structure dimensions. Finally, our study suggests that control over concentration gradients and chemical reactivity in combination with supramolecular chemistry is a promising platform for the design of soft matter objects of defined sizes, a concept that has received little attention up until now.

17.
Angew Chem Int Ed Engl ; 58(2): 547-551, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30395386

RESUMO

Hydrogel microparticles are important in materials engineering, but their applications remain limited owing to the difficulties associated with their manipulation. Herein, we report the self-orientation of crescent-shaped hydrogel microparticles and elucidate its mechanism. Additionally, the microparticles were used, for the first time, as micro-buckets to carry living cells. In aqueous solution, the microparticles spontaneously rotated to a preferred orientation with the cavity facing up. We developed a geometric model that explains the self-orienting behavior of crescent-shaped particles by minimizing the potential energy of this specific morphology. Finally, we selectively modified the particles' cavities with RGD peptide and exploited their preferred orientation to load them with living cells. Cells could adhere, proliferate, and be transported and released in vitro. These micro-buckets hold a great potential for applications in smart materials, cell therapy, and biological engineering.


Assuntos
Células/metabolismo , Hidrogéis/metabolismo , Microfluídica/métodos , Humanos
18.
Angew Chem Int Ed Engl ; 58(12): 3800-3803, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30589169

RESUMO

Here we report on how metastable supramolecular gels can be formed through seeded self-assembly of multicomponent gelators. Hydrazone-based gelators decorated with non-ionic and anionic groups are formed in situ from hydrazide and aldehyde building blocks, and lead through multiple self-sorting processes to the formation of heterogeneous gels approaching thermodynamic equilibrium. Interestingly, the addition of seeds composing of oligomers of gelators bypasses the self-sorting processes and accelerates the self-assembly along a kinetically favored pathway, resulting in homogeneous gels of which the network morphologies and gel stiffness are markedly different from the thermodynamically more stable gel products. Importantly, over time, these metastable homogeneous gel networks are capable of converting into the thermodynamically more stable state. This seeding-driven formation of out-of-equilibrium supramolecular structures is expected to serve as a simple approach towards functional materials with pathway-dependent properties.

19.
Chem Soc Rev ; 46(18): 5519-5535, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28703817

RESUMO

The use of dissipative self-assembly driven by chemical reaction networks for the creation of unique structures is gaining in popularity. In dissipative self-assembly, precursors are converted into self-assembling building blocks by the conversion of a source of energy, typically a photon or a fuel molecule. The self-assembling building block is intrinsically unstable and spontaneously reverts to its original precursor, thus giving the building block a limited lifetime. As a result, its presence is kinetically controlled, which gives the associated supramolecular material unique properties. For instance, formation and properties of these materials can be controlled over space and time by the kinetics of the coupled reaction network, they are autonomously self-healing and they are highly adaptive to small changes in their environment. By means of an example of a biological dissipative self-assembled material, the unique concepts at the basis of these supramolecular materials will be discussed. We then review recent efforts towards man-made dissipative assembly of structures and how their unique material properties have been characterized. In order to help further the field, we close with loosely defined design rules that are at the basis of the discussed examples.

20.
J Am Chem Soc ; 139(29): 9763-9766, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28671466

RESUMO

Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa