Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 147(3): 2049, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32237816

RESUMO

Intracochlear electrocochleography (ECochG) is a potential tool for the assessment of residual hearing in cochlear implant users during implantation and acoustical tuning postoperatively. It is, however, unclear how these ECochG recordings from different locations in the cochlea depend on the stimulus parameters, cochlear morphology, implant design, or hair cell degeneration. In this paper, a model is presented that simulates intracochlear ECochG recordings by combining two existing models, namely a peripheral one that simulates hair cell activation and a three-dimensional (3D) volume-conduction model of the current spread in the cochlea. The outcomes were compared to actual ECochG recordings from subjects with a cochlear implant (CI). The 3D volume conduction simulations showed that the intracochlear ECochG is a local measure of activation. Simulations showed that increasing stimulus frequency resulted in a basal shift of the peak cochlear microphonic (CM) amplitude. Increasing the stimulus level resulted in wider tuning curves as recorded along the array. Simulations with hair cell degeneration resulted in ECochG responses that resembled the recordings from the two subjects in terms of CM onset responses, higher harmonics, and the width of the tuning curve. It was concluded that the model reproduced the patterns seen in intracochlear hair cell responses recorded from CI-subjects.

2.
Ear Hear ; 39(3): 401-411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28945656

RESUMO

OBJECTIVES: The electrically evoked compound action potential (eCAP) is widely used in the clinic as an objective measure to assess cochlear implant functionality. During the past decade, there has been increasing interest in applying eCAPs for fitting of cochlear implants. Several studies have shown that eCAP-based fitting can potentially replace time-consuming behavioral fitting procedures, especially in young children. However, a closer look to all available literature revealed that there is no clear consensus on the validity of this fitting procedure. This study evaluated the validity of eCAP-based fitting of cochlear implant recipients based on a systematic review of the recent literature. DESIGN: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were used to search the PubMed, Web of Science, and Cochrane Library databases. The term "eCAP" was combined with "cochlear implants," "thresholds," and "levels," in addition to a range of related terms. Finally, 32 studies met the inclusion criteria. These studies were evaluated on the risk of bias and, when possible, compared by meta-analysis. RESULTS: Almost all assessed studies suffered from some form of risk of bias. Twenty-nine of the studies based their conclusion on a group correlation instead of individual subject correlations (analytical bias); 14 studies were unclear about randomization or blinding (outcome assessment bias); 9 studies provided no clear description of the populations used, for example, prelingually or postlingually implanted subjects (selection bias); and 4 studies had a high rate of loss (>10%) for patients or electrodes (attrition bias). Meta-analysis of these studies revealed a weak pooled correlation between eCAP thresholds and both behavioral T- and C-levels (r = 0.58 and r = 0.61, respectively). CONCLUSIONS: This review shows that the majority of the assessed studies suffered from substantial shortcomings in study design and statistical analysis. Meta-analysis showed that there is only weak evidence to support the use of eCAP data for cochlear implant fitting purposes; eCAP thresholds are an equally weak predictor for both T- and C-levels. Based on this review, it can be concluded that research on eCAP-based fitting needs a profound reflection on study design and analysis to draw well-grounded conclusions about the validity of eCAP-based fitting of cochlear implant recipients.


Assuntos
Potenciais de Ação , Implante Coclear/métodos , Implantes Cocleares , Potenciais Evocados Auditivos , Limiar Auditivo , Surdez/reabilitação , Humanos , Viés de Seleção
3.
J Neurosci ; 32(49): 17528-39, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223277

RESUMO

Tinnitus is a phantom sound percept that can be severely disabling. Its pathophysiology is poorly understood, partly due to the inability to objectively measure neural correlates of tinnitus. Gaze-evoked tinnitus (GET) is a rare form of tinnitus that may arise after vestibular schwannoma removal. Subjects typically describe tinnitus in the deaf ear on the side of the surgery that can be modulated by peripheral eye gaze. This phenomenon offers a unique opportunity to study the relation between tinnitus and brain activity. We used functional magnetic resonance imaging in humans to show that in normal-hearing control subjects, peripheral gaze results in inhibition of the auditory cortex, but no detectable response in the medial geniculate body (MGB) and inferior colliculus (IC). In patients with GET, peripheral gaze (1) reduced the cortical inhibition, (2) inhibited the MGB, and (3) activated the IC. Furthermore, increased tinnitus loudness is represented by increased activity in the cochlear nucleus (CN) and IC and reduced inhibition in the auditory cortex (AC). The increase of CN and IC activity with peripheral gaze is consistent with models of plastic reorganization in the brainstem following vestibular schwannoma removal. The activity decrease in the MGB and the reduced inhibition of the AC support a model that attributes tinnitus to a dysrhythmia of the thalamocortical loop, leading to hypometabolic theta activity in the MGB. Our data offer the first support of this loop hypothesis of tinnitus, independent of the initial experiments that led to its formulation.


Assuntos
Vias Auditivas/fisiopatologia , Transtornos da Percepção Auditiva/fisiopatologia , Movimentos Oculares/fisiologia , Neuroimagem Funcional/psicologia , Complicações Pós-Operatórias/fisiopatologia , Psicoacústica , Zumbido/fisiopatologia , Córtex Auditivo/fisiologia , Córtex Auditivo/fisiopatologia , Transtornos da Percepção Auditiva/psicologia , Núcleo Coclear/fisiologia , Núcleo Coclear/fisiopatologia , Feminino , Neuroimagem Funcional/métodos , Corpos Geniculados/fisiologia , Corpos Geniculados/fisiopatologia , Humanos , Colículos Inferiores/fisiologia , Colículos Inferiores/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/psicologia , Masculino , Pessoa de Meia-Idade , Inibição Neural/fisiologia , Neuroma Acústico/fisiopatologia , Neuroma Acústico/cirurgia , Zumbido/psicologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa