Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage Clin ; 37: 103305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36610310

RESUMO

INTRODUCTION: Lesion-symptom mapping is a key tool in understanding the relationship between brain structures and behavior. However, the behavioral consequences of lesions from different etiologies may vary because of how they affect brain tissue and how they are distributed. The inclusion of different etiologies would increase the statistical power but has been critically debated. Meanwhile, findings from lesion studies are a valuable resource for clinicians and used across different etiologies. Therefore, the main objective of the present study was to directly compare lesion-symptom maps for memory and language functions from two populations, a tumor versus a stroke population. METHODS: Data from two different studies were combined. Both the brain tumor (N = 196) and stroke (N = 147) patient populations underwent neuropsychological testing and an MRI, pre-operatively for the tumor population and within three months after stroke. For this study, we selected two internationally widely used standardized cognitive tasks, the Rey Auditory Verbal Learning Test and the Verbal Fluency Test. We used a state-of-the-art machine learning-based, multivariate voxel-wise approach to produce lesion-symptom maps for these cognitive tasks for both populations separately and combined. RESULTS: Our lesion-symptom mapping results for the separate patient populations largely followed the expected neuroanatomical pattern based on previous literature. Substantial differences in lesion distribution hindered direct comparison. Still, in brain areas with adequate coverage in both groups, considerable LSM differences between the two populations were present for both memory and fluency tasks. Post-hoc analyses of these locations confirmed that the cognitive consequences of focal brain damage varied between etiologies. CONCLUSION: The differences in the lesion-symptom maps between the stroke and tumor population could partly be explained by differences in lesion volume and topography. Despite these methodological limitations, both the lesion-symptom mapping results and the post-hoc analyses confirmed that etiology matters when investigating the cognitive consequences of lesions with lesion-symptom mapping. Therefore, caution is advised with generalizing lesion-symptom results across etiologies.


Assuntos
Neoplasias , Acidente Vascular Cerebral , Humanos , Mapeamento Encefálico/métodos , Acidente Vascular Cerebral/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética/métodos , Neoplasias/patologia
2.
Clin Transl Radiat Oncol ; 31: 14-20, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34504960

RESUMO

PURPOSE: Numerous brain MR imaging studies have been performed to understand radiation-induced cognitive decline. However, many of them focus on a single region of interest, e.g. cerebral cortex or hippocampus. In this study, we use deformation-based morphometry (DBM) and voxel-based morphometry (VBM) to measure the morphological changes in patients receiving fractionated photon RT, and relate these to the dose. Additionally, we study tissue specific volume changes in white matter (WM), grey matter (GM), cerebrospinal fluid and total intracranial volume (TIV). METHODS AND MATERIALS: From our database, we selected 28 patients with MRI of high quality available at baseline and 1 year after RT. Scans were rigidly registered to each other, and to the planning CT and dose file. We used DBM to study non-tissue-specific volumetric changes, and VBM to study volume loss in grey matter. Observed changes were then related to the applied radiation dose (in EQD2). Additionally, brain tissue was segmented into WM, GM and cerebrospinal fluid, and changes in these volumes and TIV were tested. RESULTS: Performing DBM resulted in clusters of dose-dependent volume loss 1 year after RT seen throughout the brain. Both WM and GM were affected; within the latter both cerebral cortex and subcortical nuclei show volume loss. Volume loss rates ranging from 5.3 to 15.3%/30 Gy were seen in the cerebral cortical regions in which more than 40% of voxels were affected. In VBM, similar loss rates were seen in the cortex and nuclei. The total volume of WM and GM significantly decreased with rates of 5.8% and 2.1%, while TIV remained unchanged as expected. CONCLUSIONS: Radiotherapy is associated with dose-dependent intracranial morphological changes throughout the entire brain. Therefore, we will consider to revise sparing of organs at risk based on future cognitive and neurofunctional data.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa