Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7926): 307-312, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071188

RESUMO

Monoterpenes (C10H16) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year-1), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth's radiative budget and, thereby, climate change1-3. Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (-) forms are rarely distinguished in measurement or modelling studies4-6. Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment7. Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (-)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (-)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change.


Assuntos
Secas , Florestas , Monoterpenos , Árvores , Atmosfera/química , Mudança Climática , Monoterpenos/metabolismo , Árvores/metabolismo
2.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271585

RESUMO

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Assuntos
Carbono , Floresta Úmida , Carbono/metabolismo , Ecossistema , Secas , Água/metabolismo , Árvores/metabolismo , Carboidratos , Folhas de Planta/metabolismo
3.
Plant Cell Environ ; 46(1): 133-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305510

RESUMO

The isotopic composition of xylem water (δX ) is of considerable interest for plant source water studies. In-situ monitored isotopic composition of transpired water (δT ) could provide a nondestructive proxy for δX -values. Using flow-through leaf chambers, we monitored 2-hourly δT -dynamics in two tropical plant species, one canopy-forming tree and one understory herbaceous species. In an enclosed rainforest (Biosphere 2), we observed δT -dynamics in response to an experimental severe drought, followed by a 2 H deep-water pulse applied belowground before starting regular rain. We also sampled branches to obtain δX -values from cryogenic vacuum extraction (CVE). Daily flux-weighted δ18 OT -values were a good proxy for δ18 OX -values under well-watered and drought conditions that matched the rainforest's water source. Transpiration-derived δ18 OX -values were mostly lower than CVE-derived values. Transpiration-derived δ2 HX -values were relatively high compared to source water and consistently higher than CVE-derived values during drought. Tracing the 2 H deep-water pulse in real-time showed distinct water uptake and transport responses: a fast and strong contribution of deep water to canopy tree transpiration contrasting with a slow and limited contribution to understory species transpiration. Thus, the in-situ transpiration method is a promising tool to capture rapid dynamics in plant water uptake and use by both woody and nonwoody species.


Assuntos
Isótopos , Água
4.
New Phytol ; 222(1): 18-28, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394559

RESUMO

Tree stems from wetland, floodplain and upland forests can produce and emit methane (CH4 ). Tree CH4 stem emissions have high spatial and temporal variability, but there is no consensus on the biophysical mechanisms that drive stem CH4 production and emissions. Here, we summarize up to 30 opportunities and challenges for stem CH4 emissions research, which, when addressed, will improve estimates of the magnitudes, patterns and drivers of CH4 emissions and trace their potential origin. We identified the need: (1) for both long-term, high-frequency measurements of stem CH4 emissions to understand the fine-scale processes, alongside rapid large-scale measurements designed to understand the variability across individuals, species and ecosystems; (2) to identify microorganisms and biogeochemical pathways associated with CH4 production; and (3) to develop a mechanistic model including passive and active transport of CH4 from the soil-tree-atmosphere continuum. Addressing these challenges will help to constrain the magnitudes and patterns of CH4 emissions, and allow for the integration of pathways and mechanisms of CH4 production and emissions into process-based models. These advances will facilitate the upscaling of stem CH4 emissions to the ecosystem level and quantify the role of stem CH4 emissions for the local to global CH4 budget.


Assuntos
Ciclo do Carbono , Metano/metabolismo , Caules de Planta/metabolismo , Árvores/metabolismo , Modelos Biológicos , Água
5.
New Phytol ; 220(2): 435-446, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29974469

RESUMO

The prediction of vegetation responses to climate requires a knowledge of how climate-sensitive plant traits mediate not only the responses of individual plants, but also shifts in the species and functional compositions of whole communities. The emission of isoprene gas - a trait shared by one-third of tree species - is known to protect leaf biochemistry under climatic stress. Here, we test the hypothesis that isoprene emission shapes tree species compositions in tropical forests by enhancing the tolerance of emitting trees to heat and drought. Using forest inventory data, we estimated the proportional abundance of isoprene-emitting trees (pIE) at 103 lowland tropical sites. We also quantified the temporal composition shifts in three tropical forests - two natural and one artificial - subjected to either anomalous warming or drought. Across the landscape, pIE increased with site mean annual temperature, but decreased with dry season length. Through time, pIE strongly increased under high temperatures, and moderately increased following drought. Our analysis shows that isoprene emission is a key plant trait determining species responses to climate. For species adapted to seasonal dry periods, isoprene emission may tradeoff with alternative strategies, such as leaf deciduousness. Community selection for isoprene-emitting species is a potential mechanism for enhanced forest resilience to climatic change.


Assuntos
Butadienos/análise , Mudança Climática , Hemiterpenos/análise , Filogenia , Árvores/fisiologia , Clima Tropical , Florestas , Fatores de Tempo
6.
Plant Cell Environ ; 37(2): 414-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23862653

RESUMO

Acetylation of plant metabolites fundamentally changes their volatility, solubility and activity as semiochemicals. Here we present a new technique termed dynamic (13) C-pulse chasing to track the fate of C1-3 carbon atoms of pyruvate into the biosynthesis and emission of methyl acetate (MA) and CO2 . (13) C-labelling of MA and CO2 branch emissions respond within minutes to changes in (13) C-positionally labelled pyruvate solutions fed through the transpiration stream. Strong (13) C-labelling of MA emissions occurred only under pyruvate-2-(13) C and pyruvate-2,3-(13) C feeding, but not pyruvate-1-(13) C feeding. In contrast, strong (13) CO2 emissions were only observed under pyruvate-1-(13) C feeding. These results demonstrate that MA (and other volatile and non-volatile metabolites) derive from the C2,3 atoms of pyruvate while the C1 atom undergoes decarboxylation. The latter is a non-mitochondrial source of CO2 in the light generally not considered in studies of CO2 sources and sinks. Within a tropical rainforest mesocosm, we also observed atmospheric concentrations of MA up to 0.6 ppbv that tracked light and temperature conditions. Moreover, signals partially attributed to MA were observed in ambient air within and above a tropical rainforest in the Amazon. Our study highlights the potential importance of acetyl coenzyme A (CoA) biosynthesis as a source of acetate esters and CO2 to the atmosphere.


Assuntos
Acetatos/metabolismo , Cistaceae/metabolismo , Dióxido de Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Redes e Vias Metabólicas , Fotossíntese , Clima Tropical , Compostos Orgânicos Voláteis/metabolismo
7.
Sci Total Environ ; 893: 164763, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308023

RESUMO

Deep rooting is considered a central drought-mitigation trait with vast impact on ecosystem water cycling. Despite its importance, little is known about the overall quantitative water use via deep roots and dynamic shifts of water uptake depths with changing ambient conditions. Knowledge is especially sparse for tropical trees. Therefore, we conducted a drought, deep soil water labeling and re-wetting experiment at Biosphere 2 Tropical Rainforest. We used in situ methods to determine water stable isotope values in soil and tree water in high temporal resolution. Complemented by soil and stem water content and sap flow measurements we determined percentages and quantities of deep-water in total root water uptake dynamics of different tree species. All canopy trees had access to deep-water (max. uptake depth 3.3 m), with contributions to transpiration ranging between 21 % and 90 % during drought, when surface soil water availability was limited. Our results suggest that deep soil is an essential water source for tropical trees that delays potentially detrimental drops in plant water potentials and stem water content when surface soil water is limited and could hence mitigate the impacts of increasing drought occurrence and intensity as a consequence of climate change. Quantitatively, however, the amount of deep-water uptake was low due to the trees' reduction of sap flow during drought. Total water uptake largely followed surface soil water availability and trees switched back their uptake depth dynamically, from deep to shallow soils, following rainfall. Total transpiration fluxes were hence largely driven by precipitation input.


Assuntos
Ecossistema , Árvores , Secas , Transpiração Vegetal , Água , Solo , Raízes de Plantas
8.
Nat Commun ; 14(1): 5064, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604817

RESUMO

Drought can affect the capacity of soils to emit and consume biogenic volatile organic compounds (VOCs). Here we show the impact of prolonged drought followed by rewetting and recovery on soil VOC fluxes in an experimental rainforest. Under wet conditions the rainforest soil acts as a net VOC sink, in particular for isoprenoids, carbonyls and alcohols. The sink capacity progressively decreases during drought, and at soil moistures below ~19%, the soil becomes a source of several VOCs. Position specific 13C-pyruvate labeling experiments reveal that soil microbes are responsible for the emissions and that the VOC production is higher during drought. Soil rewetting induces a rapid and short abiotic emission peak of carbonyl compounds, and a slow and long biotic emission peak of sulfur-containing compounds. Results show that, the extended drought periods predicted for tropical rainforest regions will strongly affect soil VOC fluxes thereby impacting atmospheric chemistry and climate.

9.
Tree Physiol ; 43(11): 1917-1932, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37552065

RESUMO

In the near future, climate change will cause enhanced frequency and/or severity of droughts in terrestrial ecosystems, including tropical forests. Drought responses by tropical trees may affect their carbon use, including production of volatile organic compounds (VOCs), with implications for carbon cycling and atmospheric chemistry that are challenging to predict. It remains unclear how metabolic adjustments by mature tropical trees in response to drought will affect their carbon fluxes associated with daytime CO2 production and VOC emission. To address this gap, we used position-specific 13C-pyruvate labeling to investigate leaf CO2 and VOC fluxes from four tropical species before and during a controlled drought in the enclosed rainforest of Biosphere 2 (B2). Overall, plants that were more drought-sensitive had greater reductions in daytime CO2 production. Although daytime CO2 production was always dominated by non-mitochondrial processes, the relative contribution of CO2 from the tricarboxylic acid cycle tended to increase under drought. A notable exception was the legume tree Clitoria fairchildiana R.A. Howard, which had less anabolic CO2 production than the other species even under pre-drought conditions, perhaps due to more efficient refixation of CO2 and anaplerotic use for amino acid synthesis. The C. fairchildiana was also the only species to allocate detectable amounts of 13C label to VOCs and was a major source of VOCs in B2. In C. fairchildiana leaves, our data indicate that intermediates from the mevalonic acid (MVA) pathway are used to produce the volatile monoterpene trans-ß-ocimene, but not isoprene. This apparent crosstalk between the MVA and methylerythritol phosphate pathways for monoterpene synthesis declined with drought. Finally, although trans-ß-ocimene emissions increased under drought, it was increasingly sourced from stored intermediates and not de novo synthesis. Unique metabolic responses of legumes may play a disproportionate role in the overall changes in daytime CO2 and VOC fluxes in tropical forests experiencing drought.


Assuntos
Ecossistema , Compostos Orgânicos Voláteis , Terpenos/metabolismo , Secas , Dióxido de Carbono/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Árvores/metabolismo , Carbono/metabolismo , Monoterpenos/metabolismo , Folhas de Planta/fisiologia
10.
Front Microbiol ; 12: 659079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267733

RESUMO

Tropical peatlands are hotspots of methane (CH4) production but present high variation and emission uncertainties in the Amazon region. This is because the controlling factors of methane production in tropical peats are not yet well documented. Although inhibitory effects of nitrogen oxides (NO x ) on methanogenic activity are known from pure culture studies, the role of NO x in the methane cycling of peatlands remains unexplored. Here, we investigated the CH4 content, soil geochemistry and microbial communities along 1-m-soil profiles and assessed the effects of soil NO x and nitrous oxide (N2O) on methanogenic abundance and activity in three peatlands of the Pastaza-Marañón foreland basin. The peatlands were distinct in pH, DOC, nitrate pore water concentrations, C/N ratios of shallow soils, redox potential, and 13C enrichment in dissolved inorganic carbon and CH4 pools, which are primarily contingent on H2-dependent methanogenesis. Molecular 16S rRNA and mcrA gene data revealed diverse and novel methanogens varying across sites. Importantly, we also observed a strong stratification in relative abundances of microbial groups involved in NO x cycling, along with a concordant stratification of methanogens. The higher relative abundance of ammonia-oxidizing archaea (Thaumarchaeota) in acidic oligotrophic peat than ammonia-oxidizing bacteria (Nitrospira) is noteworthy as putative sources of NO x . Experiments testing the interaction of NO x species and methanogenesis found that the latter showed differential sensitivity to nitrite (up to 85% reduction) and N2O (complete inhibition), which would act as an unaccounted CH4 control in these ecosystems. Overall, we present evidence of diverse peatlands likely differently affected by inhibitory effects of nitrogen species on methanogens as another contributor to variable CH4 fluxes.

11.
ISME J ; 15(3): 658-672, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33082572

RESUMO

The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.


Assuntos
Floresta Úmida , Solo , Brasil , Metano , Microbiologia do Solo
12.
Science ; 374(6574): 1514-1518, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914503

RESUMO

Severe droughts endanger ecosystem functioning worldwide. We investigated how drought affects carbon and water fluxes as well as soil-plant-atmosphere interactions by tracing 13CO2 and deep water 2H2O label pulses and volatile organic compounds (VOCs) in an enclosed experimental rainforest. Ecosystem dynamics were driven by different plant functional group responses to drought. Drought-sensitive canopy trees dominated total fluxes but also exhibited the strongest response to topsoil drying. Although all canopy-forming trees had access to deep water, these reserves were spared until late in the drought. Belowground carbon transport was slowed, yet allocation of fresh carbon to VOCs remained high. Atmospheric VOC composition reflected increasing stress responses and dynamic soil-plant-atmosphere interactions, potentially affecting atmospheric chemistry and climate feedbacks. These interactions and distinct functional group strategies thus modulate drought impacts and ecosystem susceptibility to climate change.

13.
Front Microbiol ; 11: 746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390985

RESUMO

Tropical peatlands are globally important carbon reservoirs that play a crucial role in fluxes of atmospheric greenhouse gases. Amazon peatlands are expected to be large source of atmospheric methane (CH4) emissions, however little is understood about the rates of CH4 flux or the microorganisms that mediate it in these environments. Here we studied a mineral nutrient gradient across peatlands in the Pastaza-Marañón Basin, the largest tropical peatland in South America, to describe CH4 fluxes and environmental factors that regulate species assemblages of methanogenic and methanotrophic microorganisms. Peatlands were grouped as minerotrophic, mixed and ombrotrophic categories by their general water source leading to different mineral nutrient content (rich, mixed and poor) quantified by trace elements abundance. Microbial communities clustered dependent on nutrient content (ANOSIM p < 0.001). Higher CH4 flux was associated with minerotrophic communities compared to the other categories. The most dominant methanogens and methanotrophs were represented by Methanobacteriaceae, and Methylocystaceae, respectively. Weighted network analysis demonstrated tight clustering of most methanogen families with minerotrophic-associated microbial families. Populations of Methylocystaceae were present across all peatlands. Null model testing for species assemblage patterns and species rank distributions confirmed non-random aggregations of Methylococcacae methanotroph and methanogen families (p < 0.05). We conclude that in studied amazon peatlands increasing mineral nutrient content provides favorable habitats for Methanobacteriaceae, while Methylocystaceae populations seem to broadly distribute independent of nutrient content.

14.
Sci Data ; 7(1): 306, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934240

RESUMO

Land-atmosphere interactions at different temporal and spatial scales are important for our understanding of the Earth system and its modeling. The Landscape Evolution Observatory (LEO) at Biosphere 2, managed by the University of Arizona, hosts three nearly identical artificial bare-soil hillslopes with dimensions of 11 × 30 m2 (1 m depth) in a controlled and highly monitored environment within three large greenhouses. These facilities provide a unique opportunity to explore these interactions. The dataset presented here is a subset of the measurements in each LEO's hillslopes, from 1 July 2015 to 30 June 2019 every 15 minutes, consisting of temperature, water content and heat flux of the soil (at 5 cm depth) for 12 co-located points; temperature, relative humidity and wind speed above ground at 5 locations and 5 different heights ranging from 0.25 m to 9-10 m; 3D wind at 1 location; the four components of radiation at 2 locations; spatially aggregated precipitation rates, total subsurface discharge, and relative water storage; and the measurements from a weather station outside the greenhouses.

15.
Nat Plants ; 6(10): 1225-1230, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33051618

RESUMO

Tropical forests may be vulnerable to climate change1-3 if photosynthetic carbon uptake currently operates near a high temperature limit4-6. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)7, and biochemical restrictions (H2), a direct temperature response8,9. Their relative control predicts different outcomes-H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO2], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref. 10). If elevated [CO2] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized9,11, tropical forest photosynthesis may have a margin of resilience to future warming.


Assuntos
Fotossíntese , Árvores/fisiologia , Pressão Atmosférica , Mudança Climática , Ecossistema , Umidade , Floresta Úmida , Temperatura , Clima Tropical
16.
Environ Int ; 145: 106131, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979812

RESUMO

Amazonian rainforest is undergoing increasing rates of deforestation, driven primarily by cattle pasture expansion. Forest-to-pasture conversion has been associated with increases in soil methane (CH4) emission. To better understand the drivers of this change, we measured soil CH4 flux, environmental conditions, and belowground microbial community structure across primary forests, cattle pastures, and secondary forests in two Amazonian regions. We show that pasture soils emit high levels of CH4 (mean: 3454.6 ± 9482.3 µg CH4 m-2 d-1), consistent with previous reports, while forest soils on average emit CH4 at modest rates (mean: 9.8 ± 120.5 µg CH4 m-2 d-1), but often act as CH4 sinks. We report that secondary forest soils tend to consume CH4 (mean: -10.2 ± 35.7 µg CH4 m-2 d-1), demonstrating that pasture CH4 emissions can be reversed. We apply a novel computational approach to identify microbial community attributes associated with flux independent of soil chemistry. While this revealed taxa known to produce or consume CH4 directly (i.e. methanogens and methanotrophs, respectively), the vast majority of identified taxa are not known to cycle CH4. Each land use type had a unique subset of taxa associated with CH4 flux, suggesting that land use change alters CH4 cycling through shifts in microbial community composition. Taken together, we show that microbial composition is crucial for understanding the observed CH4 dynamics and that microorganisms provide explanatory power that cannot be captured by environmental variables.


Assuntos
Metano , Solo , Animais , Brasil , Bovinos , Florestas , Microbiologia do Solo
18.
Naturwissenschaften ; 91(7): 329-33, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15257387

RESUMO

As part of a study of the roles of the sensory subsystem devoted to CO(2) in the nectar-feeding moth Manduca sexta, we investigated CO(2) release and nectar secretion by flowers of Datura wrightii, a preferred hostplant of Manduca. Datura flowers open at dusk and wilt by the following noon. During the first hours after dusk, when Manduca feeds, the flowers produce considerable amounts of nectar and emit levels of CO(2) that should be detectable by moths nearby. By midnight, however, both nectar secretion and CO(2) release decrease significantly. Because nectar production requires high metabolic activity, high floral CO(2) emission may indicate food abundance to the moths. We suggest that hovering moths could use the florally emitted CO(2) to help them assess the nectar content before attempting to feed in order to improve their foraging efficiency.


Assuntos
Ração Animal , Dióxido de Carbono/metabolismo , Datura/fisiologia , Comportamento Alimentar/fisiologia , Flores/fisiologia , Mariposas/fisiologia , Animais , Dióxido de Carbono/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa