Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chem Biodivers ; 19(11): e202200150, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36253138

RESUMO

Previous research shows that the root and bark extracts of Euclea natalensis have antiplasmodial activity, but the leaves have not been examined yet. This study investigated the phytochemical, antiplasmodial, and cytotoxic properties of the plant leaves. The activity against 3D7 Plasmodium falciparum was determined using the parasite lactate dehydrogenase assay, and the cytotoxicity against Vero and HeLa cells was evaluated using the MTT and resazurin assays, respectively. The bioactive compounds were isolated by chromatography, and their structures were established with spectroscopic and spectrometric techniques. The extract showed antiplasmodial activity (IC50 =25.6 µg/mL) and was not cytotoxic against Vero cells (IC50 =403.7 µg/mL). Purification of the extract afforded six flavonoid glycosides, four triterpenoids, and a coumarin. The glycosides showed antiplasmodial and cytotoxic activities, against HeLa cells, at 50 µg/mL, but the activity was reduced at 10 µg/mL. Naphthoquinones, which are among the predominant phytochemicals in the root and root bark of E. natalensis, were not detected in the leaves.


Assuntos
Antimaláricos , Ebenaceae , Humanos , Chlorocebus aethiops , Animais , Antimaláricos/farmacologia , Antimaláricos/química , Células HeLa , Células Vero , Extratos Vegetais/química , Ebenaceae/química , Folhas de Planta/química , Plasmodium falciparum , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Glicosídeos/análise
2.
Chem Biodivers ; 18(8): e2100240, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34081396

RESUMO

Ozoroa obovata (Oliv.) R. & A. Fern. var. obovata found in KwaZulu-Natal in South Africa was investigated for phytochemical constituents, and for antiplasmodial and cytotoxic effects. The plant leaves were collected from the University of KwaZulu-Natal (UKZN) arboretum on the Pietermaritzburg Campus, in March 2019. The inhibitory activity against 3D7 Plasmodium falciparum was determined using the parasite lactate dehydrogenase (pLDH) assay and cytotoxicity against HeLa cells was evaluated using the resazurin assay. The bioactive compounds were isolated by chromatographic purification and their structures were established with spectroscopic and spectrometric techniques. The plant leaf extract displayed significant antiplasmodial activity at 50 µg/mL and was also cytotoxic against HeLa cells. Chromatographic purification of the extract led to the isolation of two biflavonoids, four flavonoid glycosides, a steroid glycoside, and a megastigmene derivative. The compounds displayed antiplasmodial and antiproliferative activities at 50 µg/mL but the activity was substantially reduced at 10 µg/mL. The activities and compounds are being reported in O. obovata for the first time.


Assuntos
Anacardiaceae/química , Antimaláricos/farmacologia , Extratos Vegetais/química , Plasmodium falciparum/efeitos dos fármacos , Anacardiaceae/metabolismo , Antimaláricos/química , Antimaláricos/isolamento & purificação , Biflavonoides/química , Biflavonoides/isolamento & purificação , Biflavonoides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Células HeLa , Humanos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo
3.
Chem Biodivers ; 18(1): e2000670, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33274571

RESUMO

Abelmoschus esculentus (Okra) is used in the traditional treatment of cancer, hyperlipidaemia and hyperglycaemia. We, therefore, investigated its composition and potential cytotoxic or antioxidant properties that might underlie its phytotherapeutic applications. Its methanolic fruit extract yielded compounds 1, 2 and 3, identified through NMR, UV and MS analyses as olean-12-en-3-O-ß-d-glucopyranoside, isoquercitrin (quercetin glucoside) and 5,7,3',4'-tetrahydroxy-flavonol-3-O-[ß-d-glucopyranosyl-(1→6)]-ß-d-glucopyranoside (quercetin diglucoside), respectively. Following 48 h exposure, oleanene glucoside was mildly toxic to the HeLa and the MRC5-SV2 cancer cells, isoquercitrin was not toxic except at 100 µg/ml in HeLa, and quercetin diglucoside elicited no toxicity. In a 2',7'-dichlorofluorescein diacetate (DCFDA) assay of intracellular levels of reactive oxygen species (ROS), hydrogen peroxide increased ROS levels, an effect not affected by oleanene glucoside but protected against by isoquercitrin and quercetin diglucoside, with IC50 values, respectively, of 2.7±0.5 µg/ml and 1.9±0.2 µg/ml (3 h post-treatment) and 2.0±0.8 µg/ml and 1.5±0.4 µg/ml (24 h post-treatment.) This is the first report of this oleanene skeleton triterpenoid in the plant. The work provides some insight into why the plant is included in remedies for cancers, cardiovascular complications and diabetes, and reveals it as a potential source of novel therapeutics.


Assuntos
Abelmoschus/química , Antioxidantes/química , Glucosídeos/química , Quercetina/química , Espécies Reativas de Oxigênio/química , Triterpenos/química , Abelmoschus/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Frutas/química , Frutas/metabolismo , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo
4.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201912

RESUMO

Ethnobotanical surveys indicate that the Masai and Kikuyu in Kenya, the Venda in South Africa, and the Gumuz people of Ethiopia use Pappea capensis for the treatment of malaria. The present study aimed to investigate the phytochemical and antiplasmodial properties of the plant leaves. The bioactive compounds were isolated using chromatographic techniques. The structures were established using NMR, HRMS, and UV spectroscopy. Antiplasmodial activity of P. capensis leaf extract and isolated compounds against chloroquine-sensitive 3D7 P. falciparum was evaluated using the parasite lactate dehydrogenase assay. Cytotoxicity against HeLa (human cervix adenocarcinoma) cells was determined using the resazurin assay. The extract inhibited the viability of Plasmodium falciparum by more than 80% at 50 µg/mL, but it was also cytotoxic against HeLa cells at the same concentration. Chromatographic purification of the extract led to the isolation of four flavonoid glycosides and epicatechin. The compounds displayed a similar activity pattern with the extract against P. falciparum and HeLa cells. The results from this study suggest that the widespread use of P. capensis in traditional medicine for the treatment of malaria might have some merits. However, more selectivity studies are needed to determine whether the leaf extract is cytotoxic against noncancerous cells.


Assuntos
Antimaláricos , Apiaceae/química , Citotoxinas , Flavonoides , Malária Falciparum/tratamento farmacológico , Folhas de Planta/química , Plasmodium falciparum/crescimento & desenvolvimento , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Citotoxinas/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Células HeLa , Humanos , Malária Falciparum/metabolismo
5.
Beilstein J Org Chem ; 16: 190-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117476

RESUMO

4-(2-Fluorophenyl)-7-methoxycoumarin (6) was synthesized by Pechmann reaction under mild conditions via a three-step reaction. The solution-state 1H NMR spectra of 6 showed a strong intramolecular interaction between F and H5 (J FH = 2.6 Hz) and 13C NMR suggested that this C-F···H-C coupling is a through-space interaction. The 2D 19F-{1H} HOESY and 1H-{19F} 1D experiments were done to confirm this F···H interaction. The single crystal X-ray structure and the DFT-optimized structure showed that the fluorinated phenyl ring favors the orientation with the fluorine atom closer to H5 than H3. The X-ray structure also showed the existence of the intermolecular C-F···H-C interaction.

6.
Malar J ; 18(1): 404, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805944

RESUMO

BACKGROUND: Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. METHODS: Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. RESULTS AND DISCUSSION: A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.


Assuntos
Antimaláricos/farmacologia , Produtos Biológicos/farmacologia , Malária/prevenção & controle , Plasmodium/efeitos dos fármacos , Humanos
7.
Phys Chem Chem Phys ; 21(27): 15120-15132, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241637

RESUMO

The concept of chirality has become prominent over the years, particularly with regards to the design of therapeutic molecules. This phenomenon was recently reported for pro-carcinogenic fibroblast growth factor receptor 1 (FGFR1), wherein two inhibitors exhibited disparate inhibitory potencies due to the effects of chirality. Therefore, the ability of the R-enantiomer (R-21c) to possess a potency 10.44 times that of the S-enantiomer (S-21c) leaves us with a curiosity to investigate the underlying mechanisms using computational methods. Hence, presented in this study are insights that clearly explain the systematic effects of chirality on the differential activities of (R)-21c and (S)-21c towards FGFR1. The findings showed that the "R-configured" (R)-21c induced a notable conformational change in the active site P-loop, which enhanced its motion, as complemented by rotation of two dihedral angles: φ1(CNCC) and φ2(CC*OC), providing a favorable orientation. Likewise, optimal positioning of (R)-21c at the binding cavity allowed adequate interspaces that facilitated the formation of strong interactions with target residues. Moreover, the estimated ΔG binding correlated with bioactivity data (IC50) and, when decomposed, we observed that van der Waals (vdW) interactions were the major highlight of the binding process of both 21c enantiomers and also accounted for their differential activities. Active site interactions of (R)-21c with residues Phe489 and Arg629 stabilized its two benzimidazole motifs, while Arg570 and Pro663 formed two strong NH-N hydrogen bonds and one π-alkyl interaction, which altogether accounted for its inhibitory prowess towards FGFR1. In contrast, these interactions were not observed in (S)-21c due to its non-flexible S-configuration, which disallowed its extension into the active site region and prevented interaction with crucial residues. These results are expected to facilitate the discovery and rational design of novel and specific FGFR1 inhibitors.


Assuntos
Indazóis/química , Indazóis/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Concentração Inibidora 50 , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
8.
Bioorg Med Chem ; 25(8): 2327-2335, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28291684

RESUMO

Cancer is now the second-leading cause of mortality and morbidity, behind only heart disease, necessitating urgent development of (chemo)therapeutic interventions to stem the growing burden of cancer cases and cancer death. Plants represent a credible source of promising drug leads in this regard, with a long history of proven use in the indigenous treatment of cancer. This study therefore investigated Anacardium occidentale, one of the plants in a Nigerian Traditional Medicine formulation commonly used to manage cancerous diseases, for cytotoxic activity. Bioassay-guided fractionation, spectroscopy, Alamar blue fluorescence-based viability assay in cultured HeLa cells and microscopy were used. Four compounds, zoapatanolide A (1), agathisflavone (2), 1,2-bis(2,6-dimethoxy-4-methoxycarbonylphenyl)ethane (anacardicin, 3) and methyl gallate (4), were isolated, with the most potent being zoapatanolide A with an IC50 value of 36.2±9.8µM in the viability assay. To gain an insight into the likely molecular basis of their observed cytotoxic effects, Autodock Vina binding free energies of each of the isolated compounds with seven molecular targets implicated in cancer development (MAPK8, MAPK10, MAP3K12, MAPK3, MAPK1, MAPK7 and VEGF), were calculated. Pearson correlation coefficients were obtained with experimentally-determined IC50 in the Alamar blue viability assay. While these compounds were not as potent as a standard anticancer compound, doxorubicin, the results provide reasonable evidence that the plant species contains compounds with cytotoxic activity. This study provides some evidence of why this plant is used ethnobotanically in anticancer herbal formulations and justifies investigating Nigerian medicinal plants highlighted in recent ethnobotanical surveys.


Assuntos
Anacardiaceae/química , Folhas de Planta/química , Plantas Medicinais/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Nigéria
9.
Ren Fail ; 36(3): 419-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24344651

RESUMO

Studies indicate that hyperglycemia-induced oxidative stress triggers the development of microvascular and macrovascular complications in diabetes. Accordingly, we hypothesized that maslinic acid (MA) prevents these complications due to its antioxidant properties. We, therefore, investigated the effects of 5-week MA treatment of streptozotocin (STZ)-induced diabetic rats on anti-oxidative status of cardiac, hepatic and renal tissues as well as on kidney function. Proximal tubular effects of MA were studied in anesthetized rats challenged with hypotonic saline after a 3.5 h equilibration for 4 h of 1 h control, 1.5 h treatment and 1.5 h recovery periods using lithium clearance. MA was added to the infusate during the treatment period. Oral glucose tolerance responses to MA were monitored in rats given a glucose load after an 18 h fast. Compared with untreated diabetic rats, MA-treated diabetic animals exhibited significantly low malondialdehyde (MDA, a marker of lipid peroxidation) and increased the activity of antioxidant enzymes; superoxide dismutase and glutathione peroxidase in hepatic, cardiac and renal tissues. The expressions of gastrocnemius muscle GLUT4 and kidney GLUT1 and GLUT2 were assessed to elucidate the mechanism of the hypoglycemic effects of MA. MA-treatment diminished the expression of GLUT1 and GLUT2 in diabetic kidney and reduced glycemia values of diabetic rats. MA administration increased urinary Na+ outputs and additionally the FENa indicating that at least part of the overall reduction in Na+ reabsorption occurred in the proximal tubules. These results suggest antioxidant effects of MA can ameliorate oxidative stress and improve kidney function in diabetes mellitus.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Coração/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Ingestão de Líquidos/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicogênio/metabolismo , Insulina/metabolismo , Secreção de Insulina , Túbulos Renais Proximais/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Malondialdeído/sangue , Miocárdio/metabolismo , Ratos , Ratos Wistar , Sódio/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
10.
J Ethnopharmacol ; 324: 117757, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38219881

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The analyses of patterns of over-representation of southern African traditional medicinal plants at the genus and family level provide information about the differences in plant use among southern African countries and disease categories. 'Over-representation' refers to the phenomenon whereby the proportion of plants belonging to a taxonomic group is higher in ethnobotanical pharmacopoeia than in the total flora. AIM OF THE STUDY: This study aimed to use the Imprecise Dirichlet Model (IDM) to analyse data from ten southern African countries to establish how over-represented medicinal plant families compare with over-represented genera, how over-represented medicinal taxa differ among countries in this region of Africa, and how over-represented taxa differ among six major disease categories. MATERIALS AND METHODS: Floral data for the total species composition of each country were obtained from online databases. Medicinal plant species lists were generated from published surveys, inventories, and books. IDM calculations were executed using the inverse of the cumulative beta probability density function in Microsoft Excel™. Python programming language source code was used to calculate Pearson correlation (r) values and Jaccard coefficients (J). RESULTS: Nine of forty-two over-represented medicinal plant families in southern Africa (group 1) do not have over-represented genera. Seven of the forty genera with the highest margins of over-representation belong to under-represented families. Nineteen of the forty-two over-represented families have margins of over-representation smaller than the cumulative margins of their over-represented genera. Groups of countries with similar overall flora (J ≥ 0.333) are Botswana and Namibia (group 2), Malawi, Mozambique, Zambia and Zimbabwe (group 3). The families and genera with the highest margins of over-representation are Loganiaceae and Albizia in group 1, Combretaceae and Vachellia in group 2, Dioscoreaceae and Senna in group 3, and Sapotaceae and Solanum in group 4 (South Africa). The families and genera with the highest margins of over-representation across disease categories are Ebenaceae and Albizia, Canellaceae and Dicoma, Combretaceae and Pterocelastrus, Ebenaceae and Bersama, Francoaceae and Erythrina, and Aristolochiaceae and Strychnos for plants used in the treatment of STIs, febrile and mosquito-vector diseases, microbial infections, pain, skin conditions, and female sexual/reproductive problems, respectively. CONCLUSIONS: Genus-level calculations are more efficient in generating taxonomic lists that can be used for ethnopharmacological investigations due to the exclusion of under-represented genera. Limiting the size of geographical areas from which medicinal plant lists are sampled and targeting plants used to treat specific types of disease prevents the underestimation of niche over-represented taxa.


Assuntos
Fitoterapia , Plantas Medicinais , Etnofarmacologia , Etnobotânica , Probabilidade , África do Sul
11.
J Inorg Biochem ; 255: 112541, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554578

RESUMO

Our prior studies have illustrated that the uracil ruthenium(II) diimino complex, [Ru(H3ucp)Cl(PPh3)] (1) (H4ucp = 2,6-bis-((6-amino-1,3-dimethyluracilimino)methylene)pyridine) displayed high hypoglycemic effects in diet-induced diabetic rats. To rationalize the anti-diabetic effects of 1, three new derivatives have been prepared, cis-[Ru(bpy)2(urdp)]Cl2 (2) (urdp = 2,6-bis-((uracilimino)methylene)pyridine), trans-[RuCl2(PPh3)(urdp)] (3), and cis-[Ru(bpy)2(H4ucp)](PF6)2 (4). Various physicochemical techniques were utilized to characterize the structures of the novel ruthenium compounds. Prior to biomolecular interactions or in vitro studies, the stabilities of 1-4 were monitored in anhydrous DMSO, aqueous phosphate buffer containing 2% DMSO, and dichloromethane (DCM) via UV-Vis spectrophotometry. Time-dependent stability studies showed ligand exchange between DMSO nucleophiles and chloride co-ligands of 1 and 3, which was suppressed in the presence of an excess amount of chloride ions. In addition, the metal complexes 1 and 3 are stable in both DCM and an aqueous phosphate buffer containing 2% DMSO. In the case of compounds 2 and 4 with no chloride co-ligands within their coordination spheres, high stability in aqueous phosphate buffer containing 2% DMSO was observed. Fluorescence emission titrations of the individual ruthenium compounds with bovine serum albumin (BSA) showed that the metal compounds interact non-discriminately within the protein's hydrophobic cavities as moderate to strong binders. The metal complexes were capable of disintegrating mature amylin amyloid fibrils. In vivo glucose metabolism studies in liver (Chang) cell lines confirmed enhanced glucose metabolism as evidenced by the increased glucose utilization and glycogen synthesis in liver cell lines in the presence of complexes 2-4.


Assuntos
Antineoplásicos , Complexos de Coordenação , Diabetes Mellitus Experimental , Rutênio , Ratos , Animais , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Soroalbumina Bovina/química , Rutênio/química , Dimetil Sulfóxido , Hipoglicemiantes/farmacologia , Cloretos , Diabetes Mellitus Experimental/tratamento farmacológico , Piridinas/química , Peptídeos , Compostos de Rutênio , Glucose , Fosfatos , Antineoplásicos/farmacologia , Ligantes
12.
Molecules ; 18(4): 4739-65, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609624

RESUMO

The application of the Suzuki-Miyaura reaction in the synthesis of flavonoids, an important class of natural products, is reviewed. This reaction has not only been employed to provide access to flavonoid nuclei, but has also been applied to the synthesis of dimeric flavonoids and in the synthesis of libraries of flavonoid derivatives for biological activity studies. The classes of flavonoids that are discussed are the chalcones, flavones, isoflavones, neoflavones, biflavones and derivatives of flavonoids obtained by C-C bond formation via the Suzuki-Miyaura reaction.


Assuntos
Flavonoides/química , Técnicas de Química Combinatória , Flavonoides/síntese química , Flavonoides/classificação
13.
Beilstein J Org Chem ; 9: 1346-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23946830

RESUMO

The first total syntheses of ochnaflavone, an asymmetric biflavone consisting of apigenin and luteolin moieties, and the permethyl ether of 2,3,2'',3''-tetrahydroochnaflavone have been achieved. The key steps in the synthesis of ochnaflavone were the formation of a diaryl ether and ring cyclization of an ether-linked dimeric chalcone to assemble the two flavone nuclei. Optimal experimental conditions for the oxidative cyclization to form ochnaflavone were established.

14.
Planta Med ; 78(17): 1857-60, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23059633

RESUMO

Using activity-guided fractionation based on in vitro antibacterial assays, five biflavonoids, among them two new ones, were isolated from the aerial parts of Ormocarpum trichocarpum. The isolated compounds showed MIC values in the range of 4.0 to 136.7 µM against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumonia and IC50 values in the range of 4.30 to 94.32 µM against the chloroquine-sensitive D10 Plasmodium falciparum strain.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Biflavonoides/farmacologia , Fabaceae/química , Antibacterianos/química , Antimaláricos/química , Bacillus subtilis/efeitos dos fármacos , Biflavonoides/química , Biflavonoides/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Concentração Inibidora 50 , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Componentes Aéreos da Planta/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
15.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455467

RESUMO

Vachellia xanthophloea is used in Zulu traditional medicine as an antimalarial remedy. A moderate antiplasmodial activity was previously reported for extracts of the plant against D10 Plasmodium falciparum. This study aimed to identify the phytochemicals responsible for the antiplasmodial activity of the leaf extract. The compounds were isolated by chromatography and their structures were determined using spectroscopic and spectrometric methods. The antiplasmodial activity was evaluated using a parasite lactate dehydrogenase assay and cytotoxicity was determined using a resazurin assay. The ethyl acetate fraction inhibited P. falciparum with IC50 = 10.6 µg/mL and showed minimal cytotoxicity (98% cell viability at 33 µg/mL). The chromatographic purification of this fraction afforded sixteen compounds, including two new flavonoids. A 1:1 mixture of phytol and lupeol was also isolated from the hexane fraction. All the compounds were reported from V. xanthophloea for the first time. Among the isolated metabolites, methyl gallate displayed the best activity against P. falciparum (IC50 = 1.2 µg/mL), with a 68% viability of HeLa cells at 10 µg/mL. Therefore, methyl gallate was responsible for the antiplasmodial activity of the V. xanthophloea leaf extract and its presence in the leaf extract might account for the folkloric use of the plant as an antimalarial remedy.

16.
Nat Prod Res ; 36(16): 4052-4060, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34343036

RESUMO

Previous results indicated that the methanol extract of Gardenia thunbergia has antiplasmodial activity but no compounds have ever been isolated from the plant. Therefore, this study aimed to investigate the phytochemical and antiplasmodial properties of the plant. The methanol leaf extract of G. thunbergia inhibited Plasmodium falciparum at 50 µg/mL (> 80% inhibition) and was not cytotoxic against HeLa cells. Chromatographic purification of the extract afforded a new saponin and eight other known compounds. The saponin and two flavonoid glycosides displayed non-selective antiplasmodial activity at 50 µg/mL but the activities were diminished at 10 µg/mL. The presence of the isolated compounds in the leaf extract of G. thunbergia could account for the folkloric use of the plant in treating malaria.


Assuntos
Acanthaceae , Antimaláricos , Gardenia , Saponinas , Antimaláricos/farmacologia , Células HeLa , Humanos , Metanol , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Plasmodium falciparum
17.
Malar J ; 10: 295, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21985233

RESUMO

BACKGROUND: Anti-malarial drug resistance threatens to undermine efforts to eliminate this deadly disease. The resulting omnipresent requirement for drugs with novel modes of action prompted a national consortium initiative to discover new anti-plasmodial agents from South African medicinal plants. One of the plants selected for investigation was Dicoma anomala subsp. gerrardii, based on its ethnomedicinal profile. METHODS: Standard phytochemical analysis techniques, including solvent-solvent extraction, thin-layer- and column chromatography, were used to isolate the main active constituent of Dicoma anomala subsp. gerrardii. The crystallized pure compound was identified using nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. The compound was tested in vitro on Plasmodium falciparum cultures using the parasite lactate dehydrogenase (pLDH) assay and was found to have anti-malarial activity. To determine the functional groups responsible for the activity, a small collection of synthetic analogues was generated - the aim being to vary features proposed as likely to be related to the anti-malarial activity and to quantify the effect of the modifications in vitro using the pLDH assay. The effects of the pure compound on the P. falciparum transcriptome were subsequently investigated by treating ring-stage parasites (alongside untreated controls), followed by oligonucleotide microarray- and data analysis. RESULTS: The main active constituent was identified as dehydrobrachylaenolide, a eudesmanolide-type sesquiterpene lactone. The compound demonstrated an in vitro IC50 of 1.865 µM against a chloroquine-sensitive strain (D10) of P. falciparum. Synthetic analogues of the compound confirmed an absolute requirement that the α-methylene lactone be present in the eudesmanolide before significant anti-malarial activity was observed. This feature is absent in the artemisinins and suggests a different mode of action. Microarray data analysis identified 572 unique genes that were differentially expressed as a result of the treatment and gene ontology analysis identified various biological processes and molecular functions that were significantly affected. Comparison of the dehydrobrachylaenolide treatment transcriptional dataset with a published artesunate (also a sesquiterpene lactone) dataset revealed little overlap. These results strengthen the notion that the isolated compound and the artemisinins have differentiated modes of action. CONCLUSIONS: The novel mode of action of dehydrobrachylaenolide, detected during these studies, will play an ongoing role in advancing anti-plasmodial drug discovery efforts.


Assuntos
Antimaláricos/farmacologia , Asteraceae/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/metabolismo , Asteraceae/genética , Asteraceae/metabolismo , Fracionamento Químico , Cromatografia , Cristalografia por Raios X , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Análise em Microsséries , Extratos Vegetais/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/metabolismo , África do Sul
18.
Molecules ; 16(4): 3001-9, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21475122

RESUMO

Cissampelos capensis, commonly known by the Afrikaans name "dawidjies" or "dawidjieswortel", is the most important and best known medicinal plant of the family Menispermaceae used by the Khoisan and other rural people in the western region of South Africa. The main alkaloids in the leaves, stems and rhizomes were isolated and identified. Several of the main compounds were previously found in species of the related genus Antizoma and this similarity indicates that the two genera are closely related if not congeneric. Bulbocapnine (an aporphine alkaloid), dicentrine (an aporphine alkaloid) and salutaridine (a morphinane alkaloid) were the main alkaloids in the leaves, while bulbocapnine, cissacapine, cycleanine and insularine (the last three are bisbenzyltetrahydro-isoquinoline alkaloids) are the major compounds in the stems. The rhizome contains mostly bisbenzyltetrahydroisoquinoline alkaloids, with 12-O-methylcurine, cissacapine and cycleanine as the main ones. Alkaloids appear to be quite variable within different plant parts and different provenances, as confirmed by the difference in alkaloid patterns between coastal and inland forms of Cissampelos capensis (the morphinane alkaloid salutaridine, for example, is the major leaf alkaloid along the coast but is practically absent from the inland form of the species). The variety of alkaloids identified may contribute to the medicinal value of this species. The data on alkaloidal variation in the species has potential value and practical applications in chemotaxonomy, toxicology and pharmacognosy.


Assuntos
Alcaloides/análise , Menispermaceae/química , Plantas Medicinais/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Medicinas Tradicionais Africanas , África do Sul
19.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 12): o3412, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22199897

RESUMO

In the title mol-ecule, C(13)H(16)O(4), the pyran ring is in a half-chair conformation. There is an intra-molecular hydrogen bond involving the ketone O atom and an H atom of a phenol group which forms an S(6) ring. The ketone O atom is also involved in an inter-molecular hydrogen bond with a different phenolic H atom of a symmetry-related mol-ecule, forming C(6) chains along the c-axis direction.

20.
Chem Biol Drug Des ; 97(1): 167-183, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32757484

RESUMO

Chirality in drug design has been attracting wide interests and attention over the years based on its innate potentials of enhancing the selectivity and prowess of therapeutic molecules. This approach was fundamental to the recent design of two inhibitors, where (R,R)-HEC72702 exhibited higher potency inhibition against hepatitis B virus capsid (HBVC) than (R,S)-HEC72702. Nevertheless, the detailed molecular mechanism has remained unresolved. Here, we apply multiple computational approaches to explore, validate, and differentiate the binding modes of (R,R) and (R,S)-HEC72702 and to explain the systematic roles mediated by chirality on the distinctive inhibition of HBVC dimer (HBVCd). Our findings revealed that chirality change from R,S to R,R engenders variations in the position of the propanoic acid group of HEC72702 toward the α5' and C-TER' region of HBVCd chain B which could explain the higher inhibitory affinity of (R,R)-HEC72702. Estimated binding free energies revealed a good correlation with bioactivity data. Moreover, analysis of energy decomposition revealed the prominent effects of van der Waals interactions in the binding process of both compounds to HBVCd. Furthermore, hierarchical clustering of residue-based energetic contributions suggested two hot-spot residues W125´ and F156´ play crucial roles in the systematic motions of the propanoic acid group toward chain B.


Assuntos
Capsídeo/química , Vírus da Hepatite B/metabolismo , Sítios de Ligação , Capsídeo/metabolismo , Domínio Catalítico , Análise por Conglomerados , Dimerização , Desenho de Fármacos , Humanos , Simulação de Dinâmica Molecular , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa