Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioessays ; 37(1): 34-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25350875

RESUMO

After more than a century of research on glycolysis, we have detailed descriptions of its molecular organization, but despite this wealth of knowledge, linking the enzyme properties to metabolic pathway behavior remains challenging. These challenges arise from multi-layered regulation and the context and time dependence of component functions. However, when viewed as a system that functions according to the principles of supply and demand, a simplifying theoretical framework can be applied to study its regulation logic and to assess the coherence of experimental interpretations. These principles are universally applicable, as they emphasize the common metabolic tasks of glycolysis: the provision of free-energy carriers, and precursors for biosynthesis and stress-related compounds. Here we will review the regulation of multi-tasking by glycolysis and consider how an understanding of this central metabolic pathway can be pursued using general principles, rather than focusing on the biochemical details of constituent components.


Assuntos
Vias Biossintéticas , Metabolismo Energético , Glicólise , Trifosfato de Adenosina/metabolismo , Animais , Humanos
2.
mSystems ; 7(4): e0042322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35950759

RESUMO

The fission yeast, Schizosaccharomyces pombe, is a popular eukaryal model organism for cell division and cell cycle studies. With this extensive knowledge of its cell and molecular biology, S. pombe also holds promise for use in metabolism research and industrial applications. However, unlike the baker's yeast, Saccharomyces cerevisiae, a major workhorse in these areas, cell physiology and metabolism of S. pombe remain less explored. One way to advance understanding of organism-specific metabolism is construction of computational models and their use for hypothesis testing. To this end, we leverage existing knowledge of S. cerevisiae to generate a manually curated high-quality reconstruction of S. pombe's metabolic network, including a proteome-constrained version of the model. Using these models, we gain insights into the energy demands for growth, as well as ribosome kinetics in S. pombe. Furthermore, we predict proteome composition and identify growth-limiting constraints that determine optimal metabolic strategies under different glucose availability regimes and reproduce experimentally determined metabolic profiles. Notably, we find similarities in metabolic and proteome predictions of S. pombe with S. cerevisiae, which indicate that similar cellular resource constraints operate to dictate metabolic organization. With these cases, we show, on the one hand, how these models provide an efficient means to transfer metabolic knowledge from a well-studied to a lesser-studied organism, and on the other, how they can successfully be used to explore the metabolic behavior and the role of resource allocation in driving different strategies in fission yeast. IMPORTANCE Our understanding of microbial metabolism relies mostly on the knowledge we have obtained from a limited number of model organisms, and the diversity of metabolism beyond the handful of model species thus remains largely unexplored in mechanistic terms. Computational modeling of metabolic networks offers an attractive platform to bridge the knowledge gap and gain new insights into physiology of lesser-studied organisms. Here we showcase an example of successful knowledge transfer from the budding yeast Saccharomyces cerevisiae to a popular model organism in molecular and cell biology, fission yeast Schizosaccharomyces pombe, using computational models.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Ciclo Celular , Alocação de Recursos
3.
Mol Biol Cell ; 32(13): 1229-1240, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33881352

RESUMO

The cAMP-PKA signaling cascade in budding yeast regulates adaptation to changing environments. We developed yEPAC, a FRET-based biosensor for cAMP measurements in yeast. We used this sensor with flow cytometry for high-throughput single cell-level quantification during dynamic changes in response to sudden nutrient transitions. We found that the characteristic cAMP peak differentiates between different carbon source transitions and is rather homogenous among single cells, especially for transitions to glucose. The peaks are mediated by a combination of extracellular sensing and intracellular metabolism. Moreover, the cAMP peak follows the Weber-Fechner law; its height scales with the relative, and not the absolute, change in glucose. Last, our results suggest that the cAMP peak height conveys information about prospective growth rates. In conclusion, our yEPAC-sensor makes possible new avenues for understanding yeast physiology, signaling, and metabolic adaptation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/análise , AMP Cíclico/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Biossensoriais/métodos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citometria de Fluxo/métodos , Glucose/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Estudos Prospectivos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Análise de Célula Única/métodos
4.
Appl Microbiol Biotechnol ; 88(1): 143-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20607233

RESUMO

Geobacillus pallidus RAPc8 (NRRL: B-59396) is a moderately thermophilic gram-positive bacterium, originally isolated from Australian lake sediment. The G. pallidus RAPc8 gene encoding an inducible nitrilase was located and cloned using degenerate primers coding for well-conserved nitrilase sequences, coupled with inverse PCR. The nitrilase open reading frame was cloned into an expression plasmid and the expressed recombinant enzyme purified and characterized. The protein had a monomer molecular weight of 35,790 Da, and the purified functional enzyme had an apparent molecular weight of approximately 600 kDa by size exclusion chromatography. Similar to several plant nitrilases and some bacterial nitrilases, the recombinant G. pallidus RAPc8 enzyme produced both acid and amide products from nitrile substrates. The ratios of acid to amide produced from the substrates we tested are significantly different to those reported for other enzymes, and this has implications for our understanding of the mechanism of the nitrilases which may assist with rational design of these enzymes. Electron microscopy and image classification showed complexes having crescent-like, "c-shaped", circular and "figure-8" shapes. Protein models suggested that the various complexes were composed of 6, 8, 10 and 20 subunits, respectively.


Assuntos
Aminoidrolases/genética , Aminoidrolases/metabolismo , Geobacillus/enzimologia , Nitrilas/metabolismo , Sequência de Aminoácidos , Aminoidrolases/química , Cromatografia em Gel , Clonagem Molecular , Análise por Conglomerados , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Vetores Genéticos , Temperatura Alta , Dados de Sequência Molecular , Peso Molecular , Filogenia , Plasmídeos , Reação em Cadeia da Polimerase/métodos , Multimerização Proteica , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência
5.
ACS Sens ; 5(3): 814-822, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32077276

RESUMO

Adenosine 5-triphosphate (ATP) is the main free energy carrier in metabolism. In budding yeast, shifts to glucose-rich conditions cause dynamic changes in ATP levels, but it is unclear how heterogeneous these dynamics are at a single-cell level. Furthermore, pH also changes and affects readout of fluorescence-based biosensors for single-cell measurements. To measure ATP changes reliably in single yeast cells, we developed yAT1.03, an adapted version of the AT1.03 ATP biosensor, that is pH-insensitive. We show that pregrowth conditions largely affect ATP dynamics during transitions. Moreover, single-cell analyses showed a large variety in ATP responses, which implies large differences of glycolytic startup between individual cells. We found three clusters of dynamic responses, and we show that a small subpopulation of wild-type cells reached an imbalanced state during glycolytic startup, characterized by low ATP levels. These results confirm the need for new tools to study dynamic responses of individual cells in dynamic environments.


Assuntos
Trifosfato de Adenosina/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Glicólise , Microscopia de Fluorescência , Nutrientes/metabolismo , Saccharomyces cerevisiae/genética , Análise de Célula Única
6.
Curr Biol ; 30(12): 2238-2247.e5, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413303

RESUMO

The growth rate of single bacterial cells is continuously disturbed by random fluctuations in biosynthesis rates and by deterministic cell-cycle events, such as division, genome duplication, and septum formation. It is not understood whether, and how, bacteria reject these growth-rate disturbances. Here, we quantified growth and constitutive protein expression dynamics of single Bacillus subtilis cells as a function of cell-cycle progression. We found that, even though growth at the population level is exponential, close inspection of the cell cycle of thousands of single Bacillus subtilis cells reveals systematic deviations from exponential growth. Newborn cells display varying growth rates that depend on their size. When they divide, growth-rate variation has decreased, and growth rates have become birth size independent. Thus, cells indeed compensate for growth-rate disturbances and achieve growth-rate homeostasis. Protein synthesis and growth of single cells displayed correlated, biphasic dynamics from cell birth to division. During a first phase of variable duration, the absolute rates were approximately constant and cells behaved as sizers. In the second phase, rates increased, and growth behavior exhibited characteristics of a timer strategy. These findings demonstrate that, just like size homeostasis, growth-rate homeostasis is an inherent property of single cells that is achieved by cell-cycle-dependent rate adjustments of biosynthesis and growth.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Divisão Celular , Homeostase , Proliferação de Células
7.
Sci Rep ; 7(1): 16094, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170466

RESUMO

The inherent stochasticity of molecular reactions prevents us from predicting the exact state of single-cells in a population. However, when a population grows at steady-state, the probability to observe a cell with particular combinations of properties is fixed. Here we validate and exploit existing theory on the statistics of single-cell growth in order to predict the probability of phenotypic characteristics such as cell-cycle times, volumes, accuracy of division and cell-age distributions, using real-time imaging data for Bacillus subtilis and Escherichia coli. Our results show that single-cell growth-statistics can accurately be predicted from a few basic measurements. These equations relate different phenotypic characteristics, and can therefore be used in consistency tests of experimental single-cell growth data and prediction of single-cell statistics. We also exploit these statistical relations in the development of a fast stochastic-simulation algorithm of single-cell growth and protein expression. This algorithm greatly reduces computational burden, by recovering the statistics of growing cell-populations from the simulation of only one of its lineages. Our approach is validated by comparison of simulations and experimental data. This work illustrates a methodology for the prediction, analysis and tests of consistency of single-cell growth and protein expression data from a few basic statistical principles.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Algoritmos , Bacillus subtilis/citologia , Escherichia coli/citologia , Modelos Teóricos
8.
J R Soc Interface ; 14(132)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28701503

RESUMO

Natural selection has shaped the strategies for survival and growth of microorganisms. The success of microorganisms depends not only on slow evolutionary tuning but also on the ability to adapt to unpredictable changes in their environment. In principle, adaptive strategies range from purely deterministic mechanisms to those that exploit the randomness intrinsic to many cellular and molecular processes. Depending on the environment and selective pressures, particular strategies can lie somewhere along this continuum. In recent years, non-genetic cell-to-cell differences have received a lot of attention, not least because of their potential impact on the ability of microbial populations to survive in dynamic environments. Using several examples, we describe the origins of spontaneous and induced mechanisms of phenotypic adaptation. We identify some of the commonalities of these examples and consider the potential role of chance and constraints in microbial phenotypic adaptation.


Assuntos
Ecossistema , Epigênese Genética , Seleção Genética , Adaptação Fisiológica , Animais , Fenótipo
9.
Metabolites ; 5(2): 311-43, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26042723

RESUMO

Metabolism is generally required for cellular maintenance and for the generation of offspring under conditions that support growth. The rates, yields (efficiencies), adaptation time and robustness of metabolism are therefore key determinants of cellular fitness. For biotechnological applications and our understanding of the evolution of metabolism, it is necessary to figure out how the functional system properties of metabolism can be optimized, via adjustments of the kinetics and expression of enzymes, and by rewiring metabolism. The trade-offs that can occur during such optimizations then indicate fundamental limits to evolutionary innovations and bioengineering. In this paper, we review several theoretical and experimental findings about mechanisms for metabolic optimization.

10.
Science ; 343(6174): 1245114, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24436182

RESUMO

Cells need to adapt to dynamic environments. Yeast that fail to cope with dynamic changes in the abundance of glucose can undergo growth arrest. We show that this failure is caused by imbalanced reactions in glycolysis, the essential pathway in energy metabolism in most organisms. The imbalance arises largely from the fundamental design of glycolysis, making this state of glycolysis a generic risk. Cells with unbalanced glycolysis coexisted with vital cells. Spontaneous, nongenetic metabolic variability among individual cells determines which state is reached and, consequently, which cells survive. Transient ATP (adenosine 5'-triphosphate) hydrolysis through futile cycling reduces the probability of reaching the imbalanced state. Our results reveal dynamic behavior of glycolysis and indicate that cell fate can be determined by heterogeneity purely at the metabolic level.


Assuntos
Glucose/metabolismo , Glicólise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Biológicos , Trealose/metabolismo
11.
Behav Brain Res ; 207(2): 332-42, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19850084

RESUMO

Research in rats has shown that early maternal separation can have a significant effect on stress-associated neuro- and endocrine mechanisms in adulthood. However, despite a growing body of evidence on the neurobiology of early MS, showing significant overlap in data from rat, non-human primate and human studies, there is still some uncertainty about the validity of this model in mice. Here we present evidence in support of long lasting effects of early MS on adult mouse behaviour, which were only apparent when time was included as an analytical component. In the elevated plus maze (EPM), conventional statistical strategies, which typically evaluate behaviour as a summed test-session total, were not sufficient to reveal more complex time-dependent behavioural profiles. Specifically, the spatially more complex nature of the EPM test underscored treatment-related differences in the time-dependent adjustments of open arm exploration and risk-assessment behaviours. In contrast, the open field elicited an immediate and consistent divergence in risk-assessment behaviours, between MS animals and controls. Finally, plasma corticosterone further underscored MS-associated alterations in adult mouse stress profiles, with significantly higher concentrations in the MS group, post-restraint stress. The extension of conventional analysis strategies, to include time as a significant dimension of behaviour on the EPM, identified behavioural nuances, which could reflect adaptive aspects of stress-driven behaviours in MS mice.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Privação Materna , Aprendizagem em Labirinto/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Corticosterona/sangue , Comportamento Exploratório/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes Neuropsicológicos , Distribuição Aleatória , Restrição Física , Assunção de Riscos , Estresse Psicológico/sangue , Fatores de Tempo
12.
BMC Res Notes ; 2: 195, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19781058

RESUMO

BACKGROUND: The functional integration of the neuro-, endocrine- and immune-systems suggests that the transcriptome of white blood cells may reflect neuropsychiatric states, and be used as a non-invasive diagnostic indicator. We used a mouse maternal separation model, a paradigm of early adversity, to test the hypothesis that transcriptional changes in peripheral blood mononuclear cells (PBMCs) are paralleled by specific gene expression changes in prefrontal cortex (PFC), hippocampus (Hic) and hypothalamus (Hyp). Furthermore, we evaluated whether gene expression profiles of PBMCs could be used to predict the separation status of individual animals. FINDINGS: Microarray gene expression profiles of all three brain regions provided substantial evidence of stress-related neural differences between maternally separated and control animals. For example, changes in expression of genes involved in the glutamatergic and GABAergic systems were identified in the PFC and Hic, supporting a stress-related hyperglutamatergic state within the separated group. The expression of 50 genes selected from the PBMC microarray data provided sufficient information to predict treatment classes with 95% accuracy. Importantly, stress-related transcriptome differences in PBMC populations were paralleled by stress-related gene expression changes in CNS target tissues. CONCLUSION: These results confirm that the transcriptional profiles of peripheral immune tissues occur in parallel to changes in the brain and contain sufficient information for the efficient diagnostic prediction of stress-related neural states in mice. Future studies will need to evaluate the relevance of the predictor set of 50 genes within clinical settings, specifically within a context of stress-related disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa