Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2407148121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047042

RESUMO

The possibility to anticipate critical transitions through detecting loss of resilience has attracted attention in many fields. Resilience indicators rely on the mathematical concept of critical slowing down, which means that a system recovers more slowly from external perturbations when it gets closer to tipping point. This decrease in recovery rate can be reflected in rising autocorrelation and variance in data. To test whether resilience is changing, resilience indicators are often calculated using a moving window in long, continuous time series of the system. However, for some systems, it may be more feasible to collect several high-resolution time series in short periods of time, i.e., in bursts. Resilience indicators can then be calculated to detect a change of resilience between such bursts. Here, we compare the performance of both methods using simulated data and showcase the possible use of bursts in a case study using mood data to anticipate depression in a patient. With the same number of data points, the burst approach outperformed the moving window method, suggesting that it is possible to downsample the continuous time series and still signal an upcoming transition. We suggest guidelines to design an optimal sampling strategy. Our results imply that using bursts of data instead of continuous time series may improve the capacity to detect changes in resilience. This method is promising for a variety of fields, such as human health, epidemiology, or ecology, where continuous monitoring can be costly or unfeasible.

2.
Proc Natl Acad Sci U S A ; 121(2): e2221791120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165929

RESUMO

Using data from a wide range of natural communities including the human microbiome, plants, fish, mushrooms, rodents, beetles, and trees, we show that universally just a few percent of the species account for most of the biomass. This is in line with the classical observation that the vast bulk of biodiversity is very rare. Attempts to find traits allowing the tiny fraction of abundant species to escape rarity have remained unsuccessful. Here, we argue that this might be explained by the fact that hyper-dominance can emerge through stochastic processes. We demonstrate that in neutrally competing groups of species, rarity tends to become a trap if environmental fluctuations result in gains and losses proportional to abundances. This counter-intuitive phenomenon arises because absolute change tends to zero for very small abundances, causing rarity to become a "sticky state", a pseudoattractor that can be revealed numerically in classical ball-in-cup landscapes. As a result, the vast majority of species spend most of their time in rarity leaving space for just a few others to dominate the neutral community. However, fates remain stochastic. Provided that there is some response diversity, roles occasionally shift as stochastic events or natural enemies bring an abundant species down allowing a rare species to rise to dominance. Microbial time series spanning thousands of generations support this prediction. Our results suggest that near-neutrality within niches may allow numerous rare species to persist in the wings of the dominant ones. Stand-ins may serve as insurance when former key species collapse.


Assuntos
Ecossistema , Microbiota , Animais , Humanos , Biodiversidade , Biomassa , Árvores , Processos Estocásticos
3.
Proc Natl Acad Sci U S A ; 120(48): e2218834120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983501

RESUMO

How states and great powers rise and fall is an intriguing enigma of human history. Are there any patterns? Do polities become more vulnerable over time as they age? We analyze longevity in hundreds of premodern states using survival analysis to help provide initial insights into these questions. This approach is commonly used to study the risk of death in biological organisms or failure in mechanical systems. The results reveal that the risk of state termination increased steeply over approximately the first two centuries after formation and stabilized thereafter. This provides the first quantitative support for the hypothesis that the resilience of political states decreases over time. Potential mechanisms that could drive such declining resilience include environmental degradation, increasing complexity, growing inequality, and extractive institutions. While the cases are from premodern times, such dynamics and drivers of vulnerability may remain relevant today.


Assuntos
Envelhecimento , Longevidade , Humanos , Sociedades , Análise de Sobrevida
4.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33911035

RESUMO

Climate extremes are thought to have triggered large-scale transformations of various ancient societies, but they rarely seem to be the sole cause. It has been hypothesized that slow internal developments often made societies less resilient over time, setting them up for collapse. Here, we provide quantitative evidence for this idea. We use annual-resolution time series of building activity to demonstrate that repeated dramatic transformations of Pueblo cultures in the pre-Hispanic US Southwest were preceded by signals of critical slowing down, a dynamic hallmark of fragility. Declining stability of the status quo is consistent with archaeological evidence for increasing violence and in some cases, increasing wealth inequality toward the end of these periods. Our work thus supports the view that the cumulative impact of gradual processes may make societies more vulnerable through time, elevating the likelihood that a perturbation will trigger a large-scale transformation that includes radically rejecting the status quo and seeking alternative pathways.

5.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903226

RESUMO

Economic inequality is notoriously difficult to quantify as reliable data on household incomes are missing for most of the world. Here, we show that a proxy for inequality based on remotely sensed nighttime light data may help fill this gap. Individual households cannot be remotely sensed. However, as households tend to segregate into richer and poorer neighborhoods, the correlation between light emission and economic thriving shown in earlier studies suggests that spatial variance of remotely sensed light per person might carry a signal of economic inequality. To test this hypothesis, we quantified Gini coefficients of the spatial variation in average nighttime light emitted per person. We found a significant relationship between the resulting light-based inequality indicator and existing estimates of net income inequality. This correlation between light-based Gini coefficients and traditional estimates exists not only across countries, but also on a smaller spatial scale comparing the 50 states within the United States. The remotely sensed character makes it possible to produce high-resolution global maps of estimated inequality. The inequality proxy is entirely independent from traditional estimates as it is based on observed light emission rather than self-reported household incomes. Both are imperfect estimates of true inequality. However, their independent nature implies that the light-based proxy could be used to constrain uncertainty in traditional estimates. More importantly, the light-based Gini maps may provide an estimate of inequality where previously no data were available at all.

6.
Ecol Lett ; 26(10): 1765-1779, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37587015

RESUMO

Theory suggests that increasingly long, negative feedback loops of many interacting species may destabilize food webs as complexity increases. Less attention has, however, been paid to the specific ways in which these 'delayed negative feedbacks' may affect the response of complex ecosystems to global environmental change. Here, we describe five fundamental ways in which these feedbacks might pave the way for abrupt, large-scale transitions and species losses. By combining topological and bioenergetic models, we then proceed by showing that the likelihood of such transitions increases with the number of interacting species and/or when the combined effects of stabilizing network patterns approach the minimum required for stable coexistence. Our findings thus shift the question from the classical question of what makes complex, unaltered ecosystems stable to whether the effects of, known and unknown, stabilizing food-web patterns are sufficient to prevent abrupt, large-scale transitions under global environmental change.


Assuntos
Ecossistema , Cadeia Alimentar , Modelos Biológicos , Metabolismo Energético , Retroalimentação
7.
Am Nat ; 202(3): 260-275, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606941

RESUMO

AbstractAlternative stable ecosystem states are possible under the same environmental conditions in models of two or three interacting species and an array of feedback loops. However, multispecies food webs might weaken the feedbacks loops that can create alternative stable states. To test how this potential depends on food web properties, we develop a many-species model where consumer Allee effects emerge from consumer-resource interactions. We evaluate the interactive effects of food web connectance, interspecific trait diversity, and two classes of feedbacks: specialized feedbacks, where consumption of individual resources declines at high resource abundance (e.g., from schooling or reaching size refugia), and aggregate feedbacks, where overall resource abundance reduces consumer recruitment (e.g., from resources enhancing competition or mortality experienced by recruits). We find that aggregate feedbacks maintain, and specialized feedbacks reduce, the potential for alternative states. Interspecific trait diversity decreases the prevalence of alternative stable states more for specialized than for aggregate feedbacks. Increasing food web connectance increases the potential for alternative stable states for aggregated feedbacks but decreases it for specialized feedbacks, where losing vulnerable consumers can cascade into food web collapses. Altogether, multispecies food webs can limit the set of processes that create alternative stable states and impede consumer recovery from disturbance.


Assuntos
Ecossistema , Cadeia Alimentar , Retroalimentação , Fenótipo
8.
PLoS Comput Biol ; 18(9): e1010491, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36084152

RESUMO

Unraveling the network of interactions in ecological communities is a daunting task. Common methods to infer interspecific interactions from cross-sectional data are based on co-occurrence measures. For instance, interactions in the human microbiome are often inferred from correlations between the abundances of bacterial phylogenetic groups across subjects. We tested whether such correlation-based methods are indeed reliable for inferring interaction networks. For this purpose, we simulated bacterial communities by means of the generalized Lotka-Volterra model, with variation in model parameters representing variability among hosts. Our results show that correlations can be indicative for presence of bacterial interactions, but only when measurement noise is low relative to the variation in interaction strengths between hosts. Indication of interaction was affected by type of interaction network, process noise and sampling under non-equilibrium conditions. The sign of a correlation mostly coincided with the nature of the strongest pairwise interaction, but this is not necessarily the case. For instance, under rare conditions of identical interaction strength, we found that competitive and exploitative interactions can result in positive as well as negative correlations. Thus, cross-sectional abundance data carry limited information on specific interaction types. Correlations in abundance may hint at interactions but require independent validation.


Assuntos
Interações Microbianas , Microbiota , Bactérias , Estudos Transversais , Humanos , Filogenia
9.
Environ Sci Technol ; 57(50): 21029-21037, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38062939

RESUMO

Temperature is a crucial environmental factor affecting the distribution and performance of ectothermic organisms. This study introduces a new temperature damage model to interpret their thermal stress. Inspired by the ecotoxicological damage model in the General Unified Threshold model for Survival (GUTS) framework, the temperature damage model assumes that damage depends on the balance between temperature-dependent accumulation and constant repair. Mortality due to temperature stress is driven by the damage level exceeding a threshold. Model calibration showed a good agreement with the measured survival of Gammarus pulex exposed to different constant temperatures. Further, model simulations, including constant temperatures, daily temperature fluctuations, and heatwaves, demonstrated the model's ability to predict temperature effects for various environmental scenarios. With this, the present study contributes to the mechanistic understanding of temperature as a single stressor while facilitating the incorporation of temperature as an additional stressor alongside chemicals in mechanistic multistressor effect models.


Assuntos
Anfípodes , Animais , Toxicocinética , Anfípodes/metabolismo , Ecotoxicologia
10.
Nature ; 546(7656): 82-90, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569801

RESUMO

Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.


Assuntos
Aclimatação , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Recifes de Corais , Ecologia/métodos , Ecologia/tendências , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Atividades Humanas , Animais , Antozoários/fisiologia , Dióxido de Carbono/análise , Água do Mar/análise , Água do Mar/química
11.
Environ Sci Technol ; 56(22): 15920-15929, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36281980

RESUMO

In the face of global climate change, where temperature fluctuations and the frequency of extreme weather events are increasing, it is needed to evaluate the impact of temperature on the ecological risk assessment of chemicals. Current state-of-the-art mechanistic effect models, such as toxicokinetic-toxicodynamic (TK-TD) models, often do not explicitly consider temperature as a modulating factor. This study implemented the effect of temperature in a widely used modeling framework, the General Unified Threshold model for Survival (GUTS). We tested the model using data from toxicokinetic and toxicity experiments with Gammarus pulex exposed to the insecticides imidacloprid and flupyradifurone. The experiments revealed increased TK rates with increasing temperature and increased toxicity under chronic exposures. Using the widely used Arrhenius equation, we could include the temperature influence into the modeling. By further testing of different model approaches, differences in the temperature scaling of TK and TD model parameters could be identified, urging further investigations of the underlying mechanisms. Finally, our results show that predictions of TK-TD models improve if we include the toxicity modulating effect of temperature explicitly.


Assuntos
Anfípodes , Animais , Toxicocinética , Temperatura , Modelos Biológicos
12.
PLoS Comput Biol ; 16(4): e1007788, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275714

RESUMO

Stability landscapes are useful for understanding the properties of dynamical systems. These landscapes can be calculated from the system's dynamical equations using the physical concept of scalar potential. Unfortunately, it is well known that for most systems with two or more state variables such potentials do not exist. Here we use an analogy with art to provide an accessible explanation of why this happens and briefly review some of the possible alternatives. Additionally, we introduce a novel and simple computational tool that implements one of those solutions: the decomposition of the differential equations into a gradient term, that has an associated potential, and a non-gradient term, that lacks it. In regions of the state space where the magnitude of the non-gradient term is small compared to the gradient part, we use the gradient term to approximate the potential as quasi-potential. The non-gradient to gradient ratio can be used to estimate the local error introduced by our approximation. Both the algorithm and a ready-to-use implementation in the form of an R package are provided.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Algoritmos , Ecossistema , Modelos Estatísticos , Análise de Sistemas
13.
Proc Natl Acad Sci U S A ; 115(47): 11883-11890, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30373844

RESUMO

All life requires the capacity to recover from challenges that are as inevitable as they are unpredictable. Understanding this resilience is essential for managing the health of humans and their livestock. It has long been difficult to quantify resilience directly, forcing practitioners to rely on indirect static indicators of health. However, measurements from wearable electronics and other sources now allow us to analyze the dynamics of physiology and behavior with unsurpassed resolution. The resulting flood of data coincides with the emergence of novel analytical tools for estimating resilience from the pattern of microrecoveries observed in natural time series. Such dynamic indicators of resilience may be used to monitor the risk of systemic failure across systems ranging from organs to entire organisms. These tools invite a fundamental rethinking of our approach to the adaptive management of health and resilience.


Assuntos
Adaptação Fisiológica/fisiologia , Saúde/classificação , Resiliência Psicológica/classificação , Animais , Conservação dos Recursos Naturais/métodos , Saúde Holística , Humanos
14.
Ecol Lett ; 23(1): 2-15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707763

RESUMO

Changing conditions may lead to sudden shifts in the state of ecosystems when critical thresholds are passed. Some well-studied drivers of such transitions lead to predictable outcomes such as a turbid lake or a degraded landscape. Many ecosystems are, however, complex systems of many interacting species. While detecting upcoming transitions in such systems is challenging, predicting what comes after a critical transition is terra incognita altogether. The problem is that complex ecosystems may shift to many different, alternative states. Whether an impending transition has minor, positive or catastrophic effects is thus unclear. Some systems may, however, behave more predictably than others. The dynamics of mutualistic communities can be expected to be relatively simple, because delayed negative feedbacks leading to oscillatory or other complex dynamics are weak. Here, we address the question of whether this relative simplicity allows us to foresee a community's future state. As a case study, we use a model of a bipartite mutualistic network and show that a network's post-transition state is indicated by the way in which a system recovers from minor disturbances. Similar results obtained with a unipartite model of facilitation suggest that our results are of relevance to a wide range of mutualistic systems.


Assuntos
Ecossistema , Modelos Biológicos , Previsões , Características de Residência , Simbiose
15.
Proc Natl Acad Sci U S A ; 114(50): 13154-13157, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183971

RESUMO

Most societies are economically dominated by a small elite, and similarly, natural communities are typically dominated by a small fraction of the species. Here we reveal a strong similarity between patterns of inequality in nature and society, hinting at fundamental unifying mechanisms. We show that chance alone will drive 1% or less of the community to dominate 50% of all resources in situations where gains and losses are multiplicative, as in returns on assets or growth rates of populations. Key mechanisms that counteract such hyperdominance include natural enemies in nature and wealth-equalizing institutions in society. However, historical research of European developments over the past millennium suggests that such institutions become ineffective in times of societal upscaling. A corollary is that in a globalizing world, wealth will inevitably be appropriated by a very small fraction of the population unless effective wealth-equalizing institutions emerge at the global level.


Assuntos
Ecossistema , Modelos Econômicos , População , Fatores Socioeconômicos , Animais , Humanos
16.
Proc Natl Acad Sci U S A ; 114(17): 4442-4446, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396440

RESUMO

The massive forests of central Amazonia are often considered relatively resilient against climatic variation, but this view is challenged by the wildfires invoked by recent droughts. The impact of such fires that spread from pervasive sources of ignition may reveal where forests are less likely to persist in a drier future. Here we combine field observations with remotely sensed information for the whole Amazon to show that the annually inundated lowland forests that run through the heart of the system may be trapped relatively easily into a fire-dominated savanna state. This lower forest resilience on floodplains is suggested by patterns of tree cover distribution across the basin, and supported by our field and remote sensing studies showing that floodplain fires have a stronger and longer-lasting impact on forest structure as well as soil fertility. Although floodplains cover only 14% of the Amazon basin, their fires can have substantial cascading effects because forests and peatlands may release large amounts of carbon, and wildfires can spread to adjacent uplands. Floodplains are thus an Achilles' heel of the Amazon system when it comes to the risk of large-scale climate-driven transitions.


Assuntos
Mudança Climática , Inundações , Florestas , Fenômenos Geológicos , Agricultura , Incêndios
17.
Ecol Lett ; 22(8): 1243-1252, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31134748

RESUMO

The question whether communities should be viewed as superorganisms or loose collections of individual species has been the subject of a long-standing debate in ecology. Each view implies different spatiotemporal community patterns. Along spatial environmental gradients, the organismic view predicts that species turnover is discontinuous, with sharp boundaries between communities, while the individualistic view predicts gradual changes in species composition. Using a spatially explicit multispecies competition model, we show that organismic and individualistic forms of community organisation are two limiting cases along a continuum of outcomes. A high variance of competition strength leads to the emergence of organism-like communities due to the presence of alternative stable states, while weak and uniform interactions induce gradual changes in species composition. Dispersal can play a confounding role in these patterns. Our work highlights the critical importance of considering species interactions to understand and predict the responses of species and communities to environmental changes.


Assuntos
Ecologia , Ecossistema
18.
Glob Chang Biol ; 24(7): 2875-2883, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29658194

RESUMO

Rainforests are among the most charismatic as well as the most endangered ecosystems of the world. However, although the effects of climate change on tropical forests resilience is a focus of intense research, the conditions for their equally impressive temperate counterparts remain poorly understood, and it remains unclear whether tropical and temperate rainforests have fundamental similarities or not. Here we use new global data from high precision laser altimetry equipment on satellites to reveal for the first time that across climate zones 'giant forests' are a distinct and universal phenomenon, reflected in a separate mode of canopy height (~40 m) worldwide. Occurrence of these giant forests (cutoff height > 25 m) is negatively correlated with variability in rainfall and temperature. We also demonstrate that their distribution is sharply limited to situations with a mean annual precipitation above a threshold of 1,500 mm that is surprisingly universal across tropical and temperate climates. The total area with such precipitation levels is projected to increase by ~4 million km2 globally. Our results thus imply that strategic management could in principle facilitate the expansion of giant forests, securing critically endangered biodiversity as well as carbon storage in selected regions.


Assuntos
Mudança Climática , Floresta Úmida , Árvores/crescimento & desenvolvimento , Biodiversidade , Carbono , Temperatura , Clima Tropical
19.
Glob Chang Biol ; 24(11): 5096-5109, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30058246

RESUMO

Fires and herbivores shape tropical vegetation structure, but their effects on the stability of tree cover in different climates remain elusive. Here, we integrate empirical and theoretical approaches to determine the effects of climate on fire- and herbivore-driven forest-savanna shifts. We analyzed time series of remotely sensed tree cover and fire observations with estimates of herbivore pressure across the tropics to quantify the fire-tree cover and herbivore-tree cover feedbacks along climatic gradients. From these empirical results, we developed a spatially explicit, stochastic fire-vegetation model that accounts for herbivore pressure. We find emergent alternative stable states in tree cover with hysteresis across rainfall conditions. Whereas the herbivore-tree cover feedback can maintain low tree cover below 1,100 mm mean annual rainfall, the fire-tree cover feedback can maintain low tree cover at higher rainfall levels. Interestingly, the rainfall range where fire-driven alternative vegetation states can be found depends strongly on rainfall variability. Both higher seasonal and interannual variability in rainfall increase fire frequency, but only seasonality expands the distribution of fire-maintained savannas into wetter climates. The strength of the fire-tree cover feedback depends on the spatial configuration of tree cover: Landscapes with clustered low tree-cover areas are more susceptible to cross a tipping point of fire-driven forest loss than landscapes with scattered deforested patches. Our study shows how feedbacks involving fire, herbivores, and the spatial structure of tree cover explain the resilience of tree cover across climates.


Assuntos
Clima , Florestas , Árvores/fisiologia , Adaptação Fisiológica , Mudança Climática , Ecossistema , Herbivoria , Clima Tropical
20.
Proc Natl Acad Sci U S A ; 112(46): 14384-9, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26438857

RESUMO

Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2-4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them.


Assuntos
Cadeia Alimentar , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa