Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7772): 96-101, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462779

RESUMO

The viscoelasticity of the crosslinked semiflexible polymer networks-such as the internal cytoskeleton and the extracellular matrix-that provide shape and mechanical resistance against deformation is assumed to dominate tissue mechanics. However, the mechanical responses of soft tissues and semiflexible polymer gels differ in many respects. Tissues stiffen in compression but not in extension1-5, whereas semiflexible polymer networks soften in compression and stiffen in extension6,7. In shear deformation, semiflexible polymer gels stiffen with increasing strain, but tissues do not1-8. Here we use multiple experimental systems and a theoretical model to show that a combination of nonlinear polymer network elasticity and particle (cell) inclusions is essential to mimic tissue mechanics that cannot be reproduced by either biopolymer networks or colloidal particle systems alone. Tissue rheology emerges from an interplay between strain-stiffening polymer networks and volume-conserving cells within them. Polymer networks that soften in compression but stiffen in extension can be converted to materials that stiffen in compression but not in extension by including within the network either cells or inert particles to restrict the relaxation modes of the fibrous networks that surround them. Particle inclusions also suppress stiffening in shear deformation; when the particle volume fraction is low, they have little effect on the elasticity of the polymer networks. However, as the particles become more closely packed, the material switches from compression softening to compression stiffening. The emergence of an elastic response in these composite materials has implications for how tissue stiffness is altered in disease and can lead to cellular dysfunction9-11. Additionally, the findings could be used in the design of biomaterials with physiologically relevant mechanical properties.


Assuntos
Fenômenos Biomecânicos , Biopolímeros/química , Contagem de Células , Matriz Extracelular/metabolismo , Fibrina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Coagulação Sanguínea , Linhagem Celular , Elasticidade , Eritrócitos/citologia , Fibrina/química , Fibroblastos/citologia , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Reologia
2.
Proc Natl Acad Sci U S A ; 117(35): 21037-21044, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817547

RESUMO

Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.


Assuntos
Força Compressiva/fisiologia , Biologia Computacional/métodos , Biopolímeros/química , Coloides/química , Simulação por Computador , Elasticidade , Corpos de Inclusão/fisiologia , Modelos Químicos , Fenômenos Físicos , Pressão , Estresse Mecânico
3.
Soft Matter ; 12(22): 5050-60, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27174568

RESUMO

We present theoretical and experimental studies of the elastic response of fibrous networks subjected to uniaxial strain. Uniaxial compression or extension is applied to extracellular networks of fibrin and collagen using a shear rheometer with free water in/outflow. Both uniaxial stress and the network shear modulus are measured. Prior work [van Oosten, et al., Sci. Rep., 2015, 6, 19270] has shown softening/stiffening of these networks under compression/extension, together with a nonlinear response to shear, but the origin of such behaviour remains poorly understood. Here, we study how uniaxial strain influences the nonlinear mechanics of fibrous networks. Using a computational network model with bendable and stretchable fibres, we show that the softening/stiffening behaviour can be understood for fixed lateral boundaries in 2D and 3D networks with comparable average connectivities to the experimental extracellular networks. Moreover, we show that the onset of stiffening depends strongly on the imposed uniaxial strain. Our study highlights the importance of both uniaxial strain and boundary conditions in determining the mechanical response of hydrogels.

4.
Biomacromolecules ; 12(7): 2797-805, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21671664

RESUMO

Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on the structure and rheology of networks of purified collagen I and V, combining fluorescence and atomic force microscopy, turbidimetry, and rheometry. We demonstrate that the network stiffness strongly decreases with increasing collagen V content, even though the network structure does not substantially change. We compare the rheological data with theoretical models for rigid polymers and find that the elasticity is dominated by nonaffine deformations. There is no analytical theory describing this regime, hampering a quantitative interpretation of the influence of collagen V. Our findings are relevant for understanding molecular origins of tissue biomechanics and for guiding rational design of collagenous biomaterials for biomedical applications.


Assuntos
Colágenos Fibrilares/química , Animais , Colágenos Fibrilares/síntese química , Humanos , Tamanho da Partícula , Ratos , Reologia , Propriedades de Superfície
5.
Sci Rep ; 6: 19270, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758452

RESUMO

Gels formed by semiflexible filaments such as most biopolymers exhibit non-linear behavior in their response to shear deformation, e.g., with a pronounced strain stiffening and negative normal stress. These negative normal stresses suggest that networks would collapse axially when subject to shear stress. This coupling of axial and shear deformations can have particularly important consequences for extracellular matrices and collagenous tissues. Although measurements of uniaxial moduli have been made on biopolymer gels, these have not directly been related to the shear response. Here, we report measurements and simulations of axial and shear stresses exerted by a range of hydrogels subjected to simultaneous uniaxial and shear strains. These studies show that, in contrast to volume-conserving linearly elastic hydrogels, the Young's moduli of networks formed by the biopolymers are not proportional to their shear moduli and both shear and uniaxial moduli are strongly affected by even modest degrees of uniaxial strain.


Assuntos
Biopolímeros/química , Módulo de Elasticidade , Resistência ao Cisalhamento , Elasticidade , Pressão , Reologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa