Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(5): 053402, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481185

RESUMO

The fate of vibrational energy in the collision of methane (CH_{4}) in its antisymmetric C-H stretch vibration (ν_{3}) with a Ni(111) surface has been studied in a state-to-state scattering experiment. Laser excitation in the incident molecular beam prepared the J=1 rotational state of ν_{3}, and a bolometer in combination with selective laser excitation detected the scattered methane. The rovibrationally resolved scattering distributions reveal very efficient vibrational energy redistribution from ν_{3} to the symmetric C-H stretch vibration (ν_{1}). The branching ratio ν_{1}/ν_{3} is near 0.4 and insensitive to changes in incident kinetic energy in the range from 100 to 370 meV. State-resolved angular distributions and measurements of the residual Doppler linewidths prove that the scattering is direct. The observed vibrationally inelastic scattering provides direct experimental evidence for surface-induced vibrational energy redistribution.

2.
J Chem Phys ; 146(5): 054701, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178793

RESUMO

Quantum state resolved reactivity measurements probe the role of vibrational symmetry on the vibrational activation of the dissociative chemisorption of CH4 on Ni(111). IR-IR double resonance excitation in a molecular beam was used to prepare CH4 in three different vibrational symmetry components, A1, E, and F2, of the 2ν3 antisymmetric stretch overtone vibration as well as in the ν1+ν3 symmetric plus antisymmetric C-H stretch combination band of F2 symmetry. The quantum state specific dissociation probability S0 (sticking coefficient) was measured for each of the four vibrational states by detecting chemisorbed carbon on Ni(111) as the product of CH4 dissociation by Auger electron spectroscopy. We observe strong mode specificity, where S0 for the most reactive state ν1+ν3 is an order of magnitude higher than for the least reactive, more energetic 2ν3-E state. Our first principles quantum scattering calculations show that as molecules in the ν1 state approach the surface, the vibrational amplitude becomes localized on the reacting C-H bond, making them very reactive. This behavior results from the weakening of the reacting C-H bond as the molecule approaches the surface, decoupling its motion from the three non-reacting C-H stretches. Similarly, we find that overtone normal mode states with more ν1 character are more reactive: S0(2ν1) > S0(ν1 + ν3) > S0(2ν3). The 2ν3 eigenstates excited in the experiment can be written as linear combinations of these normal mode states. The highly reactive 2ν1 and ν1 + ν3 normal modes, being of A1 and F2 symmetry, can contribute to the 2ν3-A1 and 2ν3-F2 eigenstates, respectively, boosting their reactivity over the E component, which contains no ν1 character due to symmetry.

3.
J Phys Chem A ; 119(50): 12442-8, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26414099

RESUMO

Infrared laser excitation of partially deuterated methanes (CH3D and CH2D2) in a molecular beam is used to control their dissociative chemisorption on a Pt(111) single crystal and to determine the quantum state-resolved dissociation probabilities. The exclusive detection of C-H cleavage products adsorbed on the Pt(111) surface by infrared absorption reflection spectroscopy indicates strong bond selectivity for both methane isotopologues upon C-H stretch excitation. Furthermore, the dissociative chemisorption of both methane isotopologues is observed to be mode-specific. Excitation of symmetric C-H stretch modes produces a stronger reactivity increase than excitation of the antisymmetric C-H stretch modes, whereas bend overtone excitation has a weaker effect on reactivity. The observed mode specificity and bond selectivity are rationalized by the sudden vector projection model in terms of the overlap of the reactant's normal mode vectors with the reaction coordinate at the transition state.

4.
J Chem Phys ; 140(3): 034321, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25669393

RESUMO

Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

5.
Science ; 344(6183): 504-7, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24786076

RESUMO

Water dissociation on transition-metal catalysts is an important step in steam reforming and the water-gas shift reaction. To probe the effect of translational and vibrational activation on this important heterogeneous reaction, we performed state-resolved gas/surface reactivity measurements for the dissociative chemisorption of D2O on Ni(111), using molecular beam techniques. The reaction occurs via a direct pathway, because both the translational and vibrational energies promote the dissociation. The experimentally measured initial sticking probabilities were used to calibrate a first-principles potential energy surface based on density functional theory. Quantum dynamical calculations on the scaled potential energy surface reproduced the experimental results semiquantitatively. The larger increase of the dissociation probability by vibrational excitation than by translation per unit of energy is consistent with a late barrier along the O-D stretch reaction coordinate.

6.
J Phys Chem Lett ; 5(11): 1963-7, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26273881

RESUMO

Quantum state-resolved reactivity measurements probe the role of vibrational symmetry on the vibrational activation of the dissociative chemisorption of CH4 on Pt(111). IR-IR double resonance excitation in a molecular beam is used to prepare CH4 in all three different vibrational symmetry components A1, E, and F2 of the 2ν3 antisymmetric stretch overtone vibration. Methyl dissociation products chemisorbed on the cold Pt(111) surface are detected via reflection absorption infrared spectroscopy (RAIRS). We observe similar reactivity for CH4 prepared in the A1 and F2 sublevels but up to a factor of 2 lower reactivity for excitation of the E sublevel. It is suggested that differences in the localization of the C-H stretch amplitudes for the three states at the transition state leads to the observed difference in reactivity rather than state-specific vibrational energy transfer to electronic excitation of the metal.

7.
J Phys Chem Lett ; 5(8): 1294-9, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-26269970

RESUMO

The dissociative chemisorption of methane on metal surfaces is of fundamental and practical interest, being a rate-limiting step in the steam reforming process. The reaction is best modeled with quantum dynamics calculations, but these are currently not guaranteed to produce accurate results because they rely on potential energy surfaces based on untested density functionals and on untested dynamical approximations. To help overcome these limitations, here we present for the first time statistically accurate reaction probabilities obtained with ab initio molecular dynamics (AIMD) for a polyatomic gas-phase molecule reacting with a metal surface. Using a general purpose density functional, the AIMD reaction probabilities are in semiquantitative agreement with new quantum-state-resolved experiments on CHD3 + Pt(111). The comparison suggests the use of the sudden approximation for treating the rotations even though CHD3 has large rotational constants and yields an estimated reaction barrier of 0.9 eV for CH4 + Pt(111).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa