Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 195(3): 1866-1879, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38401532

RESUMO

Plant organs move throughout the diurnal cycle, changing leaf and petiole positions to balance light capture, leaf temperature, and water loss under dynamic environmental conditions. Upward movement of the petiole, called hyponasty, is one of several traits of the shade avoidance syndrome (SAS). SAS traits are elicited upon perception of vegetation shade signals such as far-red light (FR) and improve light capture in dense vegetation. Monitoring plant movement at a high temporal resolution allows studying functionality and molecular regulation of hyponasty. However, high temporal resolution imaging solutions are often very expensive, making this unavailable to many researchers. Here, we present a modular and low-cost imaging setup, based on small Raspberry Pi computers that can track leaf movements and elongation growth with high temporal resolution. We also developed an open-source, semiautomated image analysis pipeline. Using this setup, we followed responses to FR enrichment, light intensity, and their interactions. Tracking both elongation and the angle of the petiole, lamina, and entire leaf in Arabidopsis (Arabidopsis thaliana) revealed insight into R:FR sensitivities of leaf growth and movement dynamics and the interactions of R:FR with background light intensity. The detailed imaging options of this system allowed us to identify spatially separate bending points for petiole and lamina positioning of the leaf.


Assuntos
Arabidopsis , Luz , Folhas de Planta , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Movimento , Processamento de Imagem Assistida por Computador/métodos
2.
Plant Cell Environ ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012097

RESUMO

Flooding events are highly detrimental to most terrestrial plant species. However, there is an impressive diversity of plant species that thrive in flood-prone regions and represent a treasure trove of unexplored flood-resilience mechanisms. Here we surveyed a panel of four species from the Cardamineae tribe representing a broad tolerance range. This included the flood-tolerant Cardamine pratensis, Rorippa sylvestris and Rorippa palustris and the flood-sensitive species Cardamine hirsuta. All four species displayed a quiescent strategy, evidenced by the repression of shoot growth underwater. Comparative transcriptomics analyses between the four species and the sensitive model species Arabidopsis thaliana were facilitated via de novo transcriptome assembly and identification of 16 902 universal orthogroups at a high resolution. Our results suggest that tolerance likely evolved separately in the Cardamine and Rorippa species. While the Rorippa response was marked by a strong downregulation of cell-cycle genes, Cardamine minimized overall transcriptional regulation. However, a weak starvation response was a universal trait of tolerant species, potentially achieved in multiple ways. It could result from a strong decline in cell-cycle activity, but is also intertwined with autophagy, senescence, day-time photosynthesis and night-time fermentation capacity. Our data set provides a rich source to study adaptational mechanisms of flooding tolerance.

3.
Plant Cell Environ ; 47(8): 2936-2953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38629324

RESUMO

Plants use light as a resource and signal. Photons within the 400-700 nm waveband are considered photosynthetically active. Far-red photons (FR, 700-800 nm) are used by plants to detect nearby vegetation and elicit the shade avoidance syndrome. In addition, FR photons have also been shown to contribute to photosynthesis, but knowledge about these dual effects remains scarce. Here, we study shoot-architectural and photosynthetic responses to supplemental FR light during the photoperiod in several rice varieties. We observed that FR enrichment only mildly affected the rice transcriptome and shoot architecture as compared to established model species, whereas leaf formation, tillering and biomass accumulation were clearly promoted. Consistent with this growth promotion, we found that CO2-fixation in supplemental FR was strongly enhanced, especially in plants acclimated to FR-enriched conditions as compared to control conditions. This growth promotion dominates the effects of FR photons on shoot development and architecture. When substituting FR enrichment with an end-of-day FR pulse, this prevented photosynthesis-promoting effects and elicited shade avoidance responses. We conclude that FR photons can have a dual role, where effects depend on the environmental context: in addition to being an environmental signal, they are also a potent source of harvestable energy.


Assuntos
Regulação da Expressão Gênica de Plantas , Luz , Oryza , Fotossíntese , Brotos de Planta , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Oryza/fisiologia , Fotossíntese/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Brotos de Planta/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/fisiologia , Dióxido de Carbono/metabolismo , Fotoperíodo , Biomassa , Transcriptoma , Luz Vermelha
4.
Plant Commun ; 5(6): 100848, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38379284

RESUMO

The phytohormone ethylene is a major regulator of plant adaptive responses to flooding. In flooded plant tissues, ethylene quickly increases to high concentrations owing to its low solubility and diffusion rates in water. Ethylene accumulation in submerged plant tissues makes it a reliable cue for triggering flood acclimation responses, including metabolic adjustments to cope with flood-induced hypoxia. However, persistent ethylene accumulation also accelerates leaf senescence. Stress-induced senescence hampers photosynthetic capacity and stress recovery. In submerged Arabidopsis, senescence follows a strict age-dependent pattern starting with the older leaves. Although mechanisms underlying ethylene-mediated senescence have been uncovered, it is unclear how submerged plants avoid indiscriminate breakdown of leaves despite high systemic ethylene accumulation. We demonstrate that although submergence triggers leaf-age-independent activation of ethylene signaling via EIN3 in Arabidopsis, senescence is initiated only in old leaves. EIN3 stabilization also leads to overall transcript and protein accumulation of the senescence-promoting transcription factor ORESARA1 (ORE1) in both old and young leaves during submergence. However, leaf-age-dependent senescence can be explained by ORE1 protein activation via phosphorylation specifically in old leaves, independent of the previously identified age-dependent control of ORE1 via miR164. A systematic analysis of the roles of the major flooding stress cues and signaling pathways shows that only the combination of ethylene and darkness is sufficient to mimic submergence-induced senescence involving ORE1 accumulation and phosphorylation. Hypoxia, most often associated with flooding stress in plants, appears to have no role in these processes. Our results reveal a mechanism by which plants regulate the speed and pattern of senescence during environmental stresses such as flooding. Age-dependent ORE1 activity ensures that older, expendable leaves are dismantled first, thus prolonging the life of younger leaves and meristematic tissues that are vital to whole-plant survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Inundações , Folhas de Planta , Transdução de Sinais , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Etilenos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Fosforilação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Senescência Vegetal/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa