Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genetics ; 173(2): 1075-87, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16582432

RESUMO

An ultradense genetic linkage map with >10,000 AFLP loci was constructed from a heterozygous diploid potato population. To our knowledge, this is the densest meiotic recombination map ever constructed. A fast marker-ordering algorithm was used, based on the minimization of the total number of recombination events within a given marker order in combination with genotyping error-detection software. This resulted in "skeleton bin maps," which can be viewed as the most parsimonious marker order. The unit of distance is not expressed in centimorgans but in "bins." A bin is a position on the genetic map with a unique segregation pattern that is separated from adjacent bins by a single recombination event. Putative centromeres were identified by a strong clustering of markers, probably due to cold spots for recombination. Conversely, recombination hot spots resulted in large intervals of up to 15 cM without markers. The current level of marker saturation suggests that marker density is proportional to physical distance and independent of recombination frequency. Most chromatids (92%) recombined once or never, suggesting strong chiasma interference. Absolute chiasma interference within a chromosome arm could not be demonstrated. Two examples of contig construction and map-based cloning have demonstrated that the marker spacing was in accordance with the expected physical distance: approximately one marker per BAC length. Currently, the markers are used for genetic anchoring of a physical map of potato to deliver a sequence-ready minimal tiling path of BAC contigs of specific chromosomal regions for the potato genome sequencing consortium (http://www.potatogenome.net).


Assuntos
Genoma de Planta , Solanum tuberosum/genética , Mapeamento Cromossômico , Diploide , Marcadores Genéticos , Heterozigoto , Meiose/genética , Locos de Características Quantitativas , Recombinação Genética , Mapeamento por Restrição
2.
Genetics ; 165(4): 2107-16, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14704190

RESUMO

Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual "error rate" of 0-3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation.


Assuntos
Ligação Genética , Marcadores Genéticos , Genoma de Planta , Meiose , Solanum tuberosum/genética , Mapeamento Cromossômico , Segregação de Cromossomos , Metilação de DNA , Heterozigoto , Técnica de Amplificação ao Acaso de DNA Polimórfico , Recombinação Genética
3.
Mol Plant Pathol ; 10(4): 487-500, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19523102

RESUMO

Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.


Assuntos
Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Análise por Conglomerados , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Genes de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tylenchoidea/genética , Regulação para Cima/genética
4.
Theor Appl Genet ; 109(1): 146-52, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14985978

RESUMO

The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH x RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (http://www.dpw.wageningen-ur.nl/uhd/). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F(1) SH x RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.


Assuntos
Mapeamento Cromossômico , Imunidade Inata/genética , Doenças das Plantas/parasitologia , Solanum tuberosum/genética , Tylenchoidea , Animais , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA , Fenótipo , Doenças das Plantas/genética , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa