Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687782

RESUMO

Electromagnetic induction (EMI) systems are used for mapping the soil's electrical conductivity in near-surface applications. EMI measurements are commonly affected by time-varying external environmental factors, with temperature fluctuations being a big contributing factor. This makes it challenging to obtain stable and reliable data from EMI measurements. To mitigate these temperature drift effects, it is customary to perform a temperature drift calibration of the instrument in a temperature-controlled environment. This involves recording the apparent electrical conductivity (ECa) values at specific temperatures to obtain a look-up table that can subsequently be used for static ECa drift correction. However, static drift correction does not account for the delayed thermal variations of the system components, which affects the accuracy of drift correction. Here, a drift correction approach is presented that accounts for delayed thermal variations of EMI system components using two low-pass filters (LPF). Scenarios with uniform and non-uniform temperature distributions in the measurement device are both considered. The approach is developed using a total of 15 measurements with a custom-made EMI device in a wide range of temperature conditions ranging from 10 °C to 50 °C. The EMI device is equipped with eight temperature sensors spread across the device that simultaneously measure the internal ambient temperature during measurements. To parameterize the proposed correction approach, a global optimization algorithm called Shuffled Complex Evolution (SCE-UA) was used for efficient estimation of the calibration parameters. Using the presented drift model to perform corrections for each individual measurement resulted in a root mean square error (RMSE) of <1 mSm-1 for all 15 measurements. This shows that the drift model can properly describe the drift of the measurement device. Performing a drift correction simultaneously for all datasets resulted in a RMSE <1.2 mSm-1, which is considerably lower than the RMSE values of up to 4.5 mSm-1 obtained when using only a single LPF to perform drift corrections. This shows that the presented drift correction method based on two LPFs is more appropriate and effective for mitigating temperature drift effects.

2.
Sensors (Basel) ; 22(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632291

RESUMO

Data measured using electromagnetic induction (EMI) systems are known to be susceptible to measurement influences associated with time-varying external ambient factors. Temperature variation is one of the most prominent factors causing drift in EMI data, leading to non-reproducible measurement results. Typical approaches to mitigate drift effects in EMI instruments rely on a temperature drift calibration, where the instrument is heated up to specific temperatures in a controlled environment and the observed drift is determined to derive a static thermal apparent electrical conductivity (ECa) drift correction. In this study, a novel correction method is presented that models the dynamic characteristics of drift using a low-pass filter (LPF) and uses it for correction. The method is developed and tested using a customized EMI device with an intercoil spacing of 1.2 m, optimized for low drift and equipped with ten temperature sensors that simultaneously measure the internal ambient temperature across the device. The device is used to perform outdoor calibration measurements over a period of 16 days for a wide range of temperatures. The measured temperature-dependent ECa drift of the system without corrections is approximately 2.27 mSm-1K-1, with a standard deviation (std) of only 30 µSm-1K-1 for a temperature variation of around 30 K. The use of the novel correction method reduces the overall root mean square error (RMSE) for all datasets from 15.7 mSm-1 to a value of only 0.48 mSm-1. In comparison, a method using a purely static characterization of drift could only reduce the error to an RMSE of 1.97 mSm-1. The results show that modeling the dynamic thermal characteristics of the drift helps to improve the accuracy by a factor of four compared to a purely static characterization. It is concluded that the modeling of the dynamic thermal characteristics of EMI systems is relevant for improved drift correction.

3.
Front Neurosci ; 18: 1371103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966759

RESUMO

Introduction: Great knowledge was gained about the computational substrate of the brain, but the way in which components and entities interact to perform information processing still remains a secret. Complex and large-scale network models have been developed to unveil processes at the ensemble level taking place over a large range of timescales. They challenge any kind of simulation platform, so that efficient implementations need to be developed that gain from focusing on a set of relevant models. With increasing network sizes imposed by these models, low latency inter-node communication becomes a critical aspect. This situation is even accentuated, if slow processes like learning should be covered, that require faster than real-time simulation. Methods: Therefore, this article presents two simulation frameworks, in which network-on-chip simulators are interfaced with the neuroscientific development environment NEST. This combination yields network traffic that is directly defined by the relevant neural network models and used to steer the network-on-chip simulations. As one of the outcomes, instructive statistics on network latencies are obtained. Since time stamps of different granularity are used by the simulators, a conversion is required that can be exploited to emulate an intended acceleration factor. Results: By application of the frameworks to scaled versions of the cortical microcircuit model-selected because of its unique properties as well as challenging demands-performance curves, latency, and traffic distributions could be determined. Discussion: The distinct characteristic of the second framework is its tree-based source-address driven multicast support, which, in connection with the torus topology, always led to the best results. Although currently biased by some inherent assumptions of the network-on-chip simulators, the results suit well to those of previous work dealing with node internals and suggesting accelerated simulations to be in reach.

4.
Front Neurosci ; 16: 958343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003958

RESUMO

Simulations are a powerful tool to explore the design space of hardware systems, offering the flexibility to analyze different designs by simply changing parameters within the simulator setup. A precondition for the effectiveness of this methodology is that the simulation results accurately represent the real system. In a previous study, we introduced a simulator specifically designed to estimate the network load and latency to be observed on the connections in neuromorphic computing (NC) systems. The simulator was shown to be especially valuable in the case of large scale heterogeneous neural networks (NNs). In this work, we compare the network load measured on a SpiNNaker board running a NN in different configurations reported in the literature to the results obtained with our simulator running the same configurations. The simulated network loads show minor differences from the values reported in the ascribed publication but fall within the margin of error, considering the generation of the test case NN based on statistics that introduced variations. Having shown that the network simulator provides representative results for this type of -biological plausible-heterogeneous NNs, it also paves the way to further use of the simulator for more complex network analyses.

5.
IEEE Trans Biomed Eng ; 63(5): 1025-1033, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26394412

RESUMO

GOAL: Thermography-based infection screening at international airports plays an important role in the prevention of pandemics. However, studies show that thermography suffers from low sensitivity and specificity. To achieve higher screening accuracy, we developed a screening system based on the acquisition of multiple vital-signs. This multimodal approach increases accuracy, but introduces the need for sophisticated classification methods. This paper presents a comprehensive analysis of the multimodal approach to infection screening from a machine learning perspective. METHODS: We conduct an empirical study applying six classification algorithms to measurements from the multimodal screening system and comparing their performance among each other, as well as to the performance of thermography. In addition, we provide an information theoretic view on the use of multiple vital-signs for infection screening. The classification methods are tested using the same clinical data, which has been analyzed in our previous study using linear discriminant analysis. A total of 92 subjects were recruited for influenza screening using the system, consisting of 57 inpatients diagnosed to have seasonal influenza and 35 healthy controls. RESULTS: Our study revealed that the multimodal screening system reduces the misclassification rate by more than 50% compared to thermography. At the same time, none of the multimodal classifiers needed more than 6 ms for classification, which is negligible for practical purposes. CONCLUSION: Among the tested classifiers k-nearest neighbors, support vector machine and quadratic discriminant analysis achieved the highest cross-validated sensitivity score of 93%. SIGNIFICANCE: Multimodal infection screening might be able to address the shortcomings of thermography.


Assuntos
Algoritmos , Doenças Transmissíveis/diagnóstico , Diagnóstico por Computador/métodos , Processamento de Sinais Assistido por Computador , Termografia/métodos , Adulto , Feminino , Humanos , Influenza Humana/diagnóstico , Masculino , Sensibilidade e Especificidade , Aprendizado de Máquina Supervisionado , Adulto Jovem
6.
IEEE J Biomed Health Inform ; 18(1): 174-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24403415

RESUMO

The current rise in popularity of ballisto-cardiography-related research has led to the development of new sensor concepts and recording methods. Measuring the ballistocardiogram using bed mounted pressure sensors opens up new possibilities for home monitoring applications. The signals measured with these sensors contain a mixture of cardiac and respiratory components, which can be used for detection of comorbidities of heart failure like apnea or arrhythmia. However, the separation of the cardiac and respiratory components has proven to be difficult, since there is significant overlap in the spectra of both components. In this paper, an algorithm for the separation task is presented, which can overcome the problem of overlapping spectra. Additionally, a model has been developed for the generation of artificial ballistocardiograms, which are used to analyze the separation performance. Furthermore, the algorithm is tested on preliminary data from a clinical study.


Assuntos
Balistocardiografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Frequência Cardíaca/fisiologia , Humanos , Modelos Teóricos , Dinâmica não Linear , Distribuição Normal , Respiração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa