Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(19): 5695-5707, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876025

RESUMO

Aerobic metabolism generates 15-20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water-breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.


Assuntos
Peixes , Oxigênio , Animais , Tamanho Celular , Hipóxia/metabolismo , Oxigênio/metabolismo , Filogenia , Temperatura
2.
J Exp Biol ; 224(Pt 1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33257437

RESUMO

Being composed of small cells may carry energetic costs related to maintaining ionic gradients across cell membranes as well as benefits related to diffusive oxygen uptake. Here, we test the hypothesis that these costs and benefits of cell size in ectotherms are temperature dependent. To study the consequences of cell size for whole-organism metabolic rate, we compared diploid and triploid zebrafish larvae differing in cell size. A fully factorial design was applied combining three different rearing and test temperatures that allowed us to distinguish acute from acclimated thermal effects. Individual oxygen consumption rates of diploid and triploid larvae across declining levels of oxygen availability were measured. We found that both acute and acclimated thermal effects affected the metabolic response. In comparison with triploids, diploids responded more strongly to acute temperatures, especially when reared at the highest temperature. These observations support the hypothesis that animals composed of smaller cells (i.e. diploids) are less vulnerable to oxygen limitation in warm aquatic habitats. Furthermore, we found slightly improved hypoxia tolerance in diploids. By contrast, warm-reared triploids had higher metabolic rates when they were tested at acute cold temperature, suggesting that being composed of larger cells may provide metabolic advantages in the cold. We offer two mechanisms as a potential explanation of this result, related to homeoviscous adaptation of membrane function and the mitigation of developmental noise. Our results suggest that being composed of larger cells provides metabolic advantages in cold water, while being composed of smaller cells provides metabolic advantages in warm water.


Assuntos
Diploide , Triploidia , Animais , Tamanho Celular , Larva , Peixe-Zebra/genética
3.
J Logic Lang Inf ; 27(3): 255-294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956398

RESUMO

Theory of mind refers to the human capacity for reasoning about others' mental states based on observations of their actions and unfolding events. This type of reasoning is notorious in the cognitive science literature for its presumed computational intractability. A possible reason could be that it may involve higher-order thinking (e.g., 'you believe that I believe that you believe'). To investigate this we formalize theory of mind reasoning as updating of beliefs about beliefs using dynamic epistemic logic, as this formalism allows to parameterize 'order of thinking.' We prove that theory of mind reasoning, so formalized, indeed is intractable (specifically, PSPACE-complete). Using parameterized complexity we prove, however, that the 'order parameter' is not a source of intractability. We furthermore consider a set of alternative parameters and investigate which of them are sources of intractability. We discuss the implications of these results for the understanding of theory of mind.

4.
Cognition ; 232: 105150, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563568

RESUMO

Despite wide variation among natural languages, there are linguistic properties thought to be universal to all or nearly all languages. Here, we consider universals at the semantic level, in the domain of quantifiers, which are given by the properties of monotonicity, quantity, and conservativity, and we investigate whether these universals might be explained by differences in complexity. First, we use a minimal pair methodology and compare the complexities of individual quantifiers using approximate Kolmogorov complexity. Second, we use a simple yet expressive grammar to generate a large collection of quantifiers and we investigate their complexities at an aggregate level in terms of both their minimal description lengths and their approximate Kolmogorov complexities. For minimal description length we find that quantifiers satisfying semantic universals are simpler: they have a shorter minimal description length. For approximate Kolmogorov complexity we find that monotone quantifiers have a lower Kolmogorov complexity than non-monotone quantifiers and for quantity and conservativity we find that approximate Kolmogorov complexity does not scale robustly. These results suggest that the simplicity of quantifier meanings, in terms of their minimal description length, partially explains the presence of semantic universals in the domain of quantifiers.


Assuntos
Idioma , Semântica , Humanos , Linguística , Política
5.
Front Physiol ; 12: 738804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950046

RESUMO

Cell size may be important in understanding the thermal biology of ectotherms, as the regulation and consequences of cell size appear to be temperature dependent. Using a recently developed model system of triploid zebrafish (which have around 1.5-fold larger cells than their diploid counterparts) we examine the effects of cell size on gene expression, growth, development and swimming performance in zebrafish larvae at different temperatures. Both temperature and ploidy affected the expression of genes related to metabolic processes (citrate synthase and lactate dehydrogenase), growth and swimming performance. Temperature also increased development rate, but there was no effect of ploidy level. We did find interactive effects between ploidy and temperature for gene expression, body size and swimming performance, confirming that the consequences of cell size are temperature dependent. Triploids with larger cells performed best at cool conditions, while diploids performed better at warmer conditions. These results suggest different selection pressures on ectotherms and their cell size in cold and warm habitats.

6.
PLoS One ; 15(3): e0229468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32119699

RESUMO

There is renewed interest in the regulation and consequences of cell size adaptations in studies on understanding the ecophysiology of ectotherms. Here we test if induction of triploidy, which increases cell size in zebrafish (Danio rerio), makes for a good model system to study consequences of cell size. Ideally, diploid and triploid zebrafish should differ in cell size, but should otherwise be comparable in order to be suitable as a model. We induced triploidy by cold shock and compared diploid and triploid zebrafish larvae under standard rearing conditions for differences in genome size, cell size and cell number, development, growth and swimming performance and expression of housekeeping genes and hsp70.1. Triploid zebrafish have larger but fewer cells, and the increase in cell size matched the increase in genome size (+ 50%). Under standard conditions, patterns in gene expression, ontogenetic development and larval growth were near identical between triploids and diploids. However, under demanding conditions (i.e. the maximum swimming velocity during an escape response), triploid larvae performed poorer than their diploid counterparts, especially after repeated stimuli to induce swimming. This result is consistent with the idea that larger cells have less capacity to generate energy, which becomes manifest during repeated physical exertion resulting in increased fatigue. Triploidy induction in zebrafish appears a valid method to increase specifically cell size and this provides a model system to test for consequences of cell size adaptation for the energy budget and swimming performance of this ectothermic vertebrate.


Assuntos
Natação/fisiologia , Triploidia , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Tamanho Celular , Resposta ao Choque Frio , Diploide , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Tamanho do Genoma , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
7.
Artigo em Inglês | MEDLINE | ID: mdl-28303116

RESUMO

Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa