Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1522(1): 74-97, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36726230

RESUMO

Vegetation and atmosphere processes are coupled through a myriad of interactions linking plant transpiration, carbon dioxide assimilation, turbulent transport of moisture, heat and atmospheric constituents, aerosol formation, moist convection, and precipitation. Advances in our understanding are hampered by discipline barriers and challenges in understanding the role of small spatiotemporal scales. In this perspective, we propose to study the atmosphere-ecosystem interaction as a continuum by integrating leaf to regional scales (multiscale) and integrating biochemical and physical processes (multiprocesses). The challenges ahead are (1) How do clouds and canopies affect the transferring and in-canopy penetration of radiation, thereby impacting photosynthesis and biogenic chemical transformations? (2) How is the radiative energy spatially distributed and converted into turbulent fluxes of heat, moisture, carbon, and reactive compounds? (3) How do local (leaf-canopy-clouds, 1 m to kilometers) biochemical and physical processes interact with regional meteorology and atmospheric composition (kilometers to 100 km)? (4) How can we integrate the feedbacks between cloud radiative effects and plant physiology to reduce uncertainties in our climate projections driven by regional warming and enhanced carbon dioxide levels? Our methodology integrates fine-scale explicit simulations with new observational techniques to determine the role of unresolved small-scale spatiotemporal processes in weather and climate models.


Assuntos
Dióxido de Carbono , Ecossistema , Humanos , Atmosfera/química , Tempo (Meteorologia) , Clima
2.
Nat Geosci ; 11(9): 744-748, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30319710

RESUMO

Severe droughts in the Northern Hemisphere cause widespread decline of agricultural yield, reduction of forest carbon uptake, and increased CO2 growth rates in the atmosphere. Plants respond to droughts by partially closing their stomata to limit their evaporative water loss, at the expense of carbon uptake by photosynthesis. This trade-off maximizes their water-use efficiency, as measured for many individual plants under laboratory conditions and field experiments. Here we analyze the 13C/12C stable isotope ratio in atmospheric CO2 (reported as δ13C) to provide new observational evidence of the impact of droughts on the water-use efficiency across areas of millions of km2 and spanning one decade of recent climate variability. We find strong and spatially coherent increases in water-use efficiency along with widespread reductions of net carbon uptake over the Northern Hemisphere during severe droughts that affected Europe, Russia, and the United States in 2001-2011. The impact of those droughts on water-use efficiency and carbon uptake by vegetation is substantially larger than simulated by the land-surface schemes of six state-of-the-art climate models. This suggests that drought induced carbon-climate feedbacks may be too small in these models and improvements to their vegetation dynamics using stable isotope observations can help to improve their drought response.

3.
Nat Commun ; 5: 4270, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24967601

RESUMO

The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.


Assuntos
Briófitas , Ciclo do Carbono , Ecossistema , Fotossíntese , Taiga , Carbono , Dióxido de Carbono , Modelos Biológicos , Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa