Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Gastroenterology ; 153(5): 1351-1362.e4, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28756234

RESUMO

BACKGROUND & AIMS: Although tumor necrosis factor (TNF) antagonists reduce many clinical features of inflammatory bowel disease, complete mucosal healing occurs in fewer than 50% of patients. The Fc-region of monoclonal antibodies against TNF has immunosuppressive properties via effects on macrophage polarization. We examined the interaction between the anti-TNF Fc-region and Fcγ receptors (FcγR), and whether the absence of the Fc core fucose (which increases binding to FcγRIIIa) increases the efficacy of anti-TNF in mice with colitis. METHODS: We generated Rag1-/- mice that lack all activating FcγRs (FcγRI, FcγRIII, and FcγRIV; called FcγR-/-Rag1-/- mice). We produced hypo-fucosylated antibodies against mouse and human TNF (adalimumab). Colitis was induced in mice by transfer of CD4+CD45RBhi to FcγR-/-Rag1-/- or Rag1-/- littermates; mice were given different antibodies against TNF or isotype (control) antibodies and disease activity index scores were determined. Colon tissues were collected and analyzed by histology. Human peripheral blood mononuclear cells (PBMCs) were isolated from blood of healthy donors. T-cell proliferation and proportions of CD206+ (immune regulatory) macrophages were measured in mixed lymphocyte reactions. Human PBMCs were genotyped for FCGR3A158 (the FcγRIIIa-158F allotype displays a lower Fc binding affinity) using the TaqMan single nucleotide polymorphism genotype assay. RESULTS: Rag1-/- mice with colitis given anti-TNF had near complete mucosal healing and Rag1-/- mice given an isotype control antibody developed severe colitis. In contrast, FcγR-/-Rag1-/- mice were refractory to the effects of anti-TNF: their histological colitis scores were as severe as those from FcγR-/-Rag1-/- mice given a control antibody. Colons from Rag1-/- mice that received anti-TNF had an increased number of CD206+ macrophages compared with Rag1-/- mice given control antibody; in FcγR-/-Rag1-/- mice given anti-TNF these numbers were as low as FcγR-/-Rag1-/- given the control antibody. In human PBMCs, anti-TNF increased the number of CD206+ macrophages: this required expression of FcγRIIIa; numbers of these cells were reduced in PBMCs with the low-affinity FcγRIIIa-158F genotype. A hypo-fucosylated form of adalimumab bound human FcγRIIIa with a higher affinity than control adalimumab. When hypo-fucosylated adalimumab was added to PBMCs, a larger number of CD206+ macrophages formed and T-cell proliferation was reduced, compared with addition of a control adalimumab. Hypo-fucosylated adalimumab increased the number of CD206+ macrophages in PMBCs that expressed the low-affinity FcγRIIIa. In mice with colitis, hypo-fucosylated anti-TNF significantly increased the number of CD206+ macrophages in the colon compared with control anti-TNF and was more effective in reducing colitis severity as measured by histology. CONCLUSIONS: In a study of the in vitro and in vivo mechanisms of anti-TNF, we found FcγR engagement by anti-TNF to be required for reduction of colitis in mice and development of CD206+ macrophages. A hypo-fucosylated form of anti-TNF binds FcγRIIIa with higher affinity and induces development of CD206+ macrophages in human PBMCs, especially PBMCs that express low-affinity FcγRIIIa. Hypo-fucosylated anti-TNF might be more effective in patients with inflammatory bowel disease.


Assuntos
Adalimumab/farmacologia , Anticorpos Monoclonais/farmacologia , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Imunossupressores/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Transferência Adotiva , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/metabolismo , Colo/imunologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de IgG/deficiência , Receptores de IgG/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Fatores de Tempo , Fator de Necrose Tumoral alfa/imunologia , Cicatrização/efeitos dos fármacos
3.
J Thromb Haemost ; 22(4): 1046-1055, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159648

RESUMO

BACKGROUND: COVID-19 vaccines have been widely used to control the SARS-CoV-2 pandemic. In individuals receiving replication-incompetent, adenovirus vector-based COVID-19 vaccines (eg, ChAdOx1 nCoV-19 [AstraZeneca] or Ad26.COV2.S [Johnson & Johnson/Janssen] vaccines), a very rare but serious adverse reaction has been reported and described as vaccine-induced immune thrombotic thrombocytopenia (VITT). The exact mechanism of VITT following Ad26.COV2.S vaccination is under investigation. Antibodies directed against human platelet factor 4 (PF4) are considered critical in the pathogenesis of VITT, suggesting similarities with heparin-induced thrombocytopenia. It has been postulated that components of these vaccines mimic the role of heparin by binding to PF4, triggering production of these anti-PF4 antibodies. OBJECTIVES: This study aimed to investigate the potential interaction between human PF4 and Ad26.COV2.S vaccine using several biophysical techniques. METHODS: Direct interaction of PF4 with Ad26.COV2.S vaccine was investigated using dynamic light scattering, biolayer interferometry, and surface plasmon resonance. For both biosensing methods, the Ad26.COV2.S vaccine was immobilized to the sensor surface and PF4 was used as analyte. RESULTS: No direct interactions between PF4 and Ad26.COV2.S vaccine could be detected using dynamic light scattering and biolayer interferometry. Surface plasmon resonance technology was shown to be unsuitable to investigate these types of interactions. CONCLUSION: Our findings make it very unlikely that direct binding of PF4 to Ad26.COV2.S vaccine or components thereof is driving the onset of VITT, although the occurrence of such interactions after immunization (potentially facilitated by unknown plasma or cellular factors) cannot be excluded. Further research is warranted to improve the understanding of the full mechanism of this adverse reaction.


Assuntos
COVID-19 , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Vacinas , Humanos , Ad26COVS1 , Fator Plaquetário 4 , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Fatores Imunológicos
4.
J Immunol ; 182(7): 4275-81, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19299726

RESUMO

The Fc fragment of IgG4 can interact with the Fc fragment of another IgG molecule. This interaction is a confounding factor when measuring IgG4 rheumatoid factor levels. Recently, we demonstrated that half-molecules of IgG4 can exchange to form a bispecific Ab. We expected these two phenomena to be related and investigated the physicochemical aspects of IgG4 Fc-Fc interactions. We found that IgG4 is >99% monomeric by size-exclusion chromatography; therefore, IgG4 Fc-Fc interactions in the fluid phase (if any) would be short-lived. However, (125)I-labeled IgG4 does bind to IgG1 and IgG4 coupled to a solid phase. By contrast, IgG1 does not bind to coupled IgG4. Furthermore, conditions that induce partial unfolding/dissociation of the CH3 domains enhance IgG4 Fc binding, suggesting that Fc binding is primarily CH3 mediated. IgG4 slowly associates with both IgG4 and IgG1 coupled to a biosensor chip. Remarkably, subsequent dissociation was much faster for IgG4 than for IgG1. Moreover, after binding of an IgG4 mAb to Sepharose-coupled Ag, we observed additional binding of IgG4 with irrelevant specificity, whereas similar binding was not observed with Ag-bound IgG1. We propose that the IgG4-IgG4 Fc interaction resembles an intermediate of the Fab-arm (half-molecule) exchange reaction that is stabilized because one of the IgG4 molecules is coupled to a solid phase. By contrast, IgG4 Fc recognizes IgG1 only after a conformational change that renders CH3(IgG1) accessible to an interaction with the CH3(IgG4). Such Fc interactions may enhance Ag binding of IgG4 in vivo.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo
5.
Science ; 362(6414): 598-602, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385580

RESUMO

Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of vaccines and therapeutics. We report the use of diverse camelid single-domain antibodies to influenza virus hemagglutinin to generate multidomain antibodies with impressive breadth and potency. Multidomain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multidomain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus-mediated gene delivery, they may provide an effective strategy to prevent infection with influenza virus and other highly variable pathogens.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Cristalografia por Raios X , Cães , Feminino , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Biblioteca de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único
6.
Thromb Haemost ; 89(3): 429-37, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12624624

RESUMO

The R2 haplotype of the FV gene spans from exon 8 through 25 and comprises several strongly linked polymorphisms in the FV gene, including some missense mutations. Carriership of the R2-FV allele has been associated with reduced plasma FV levels, increased FV1/FV2 ratios and mild APC resistance. Some studies have reported that carriership of the R2-FV allele is associated with an increased risk of venous thombosis. At this moment, the individual contribution to the R2-associated phenotypes of the different mutations linked to the R2 haplotype of FV is unclear. The main objective of our study was to obtain insight in the influence of the R2-related Asp2194Gly mutation on FV expression, FV structure and FV function using Bdomainless rFV mutants. Replacing Asp at position 2194 by Gly resulted in a more than threefold reduction of rFV expression compared to rFV wild-type. Therefore, we propose that the R2-linked Asp2194Gly mutation is an important determinant of the association of the R2-FV allele with lower FV levels. Furthermore, the light chains from Asp2194Gly containing rFV mutants showed similar molecular weights as the light chains of the non-glycosylated rFVwt or the plasma FV2 isoform, indicating that glycosylation at Asn2181 is not stimulated by the presence of a glycine in position 2194. Finally, the apparent K(d) for dissociation of the FXaVa complex (K(1/2Xa)) was not higher in rFV mutants with the Asp2194Gly mutation than for rFVwt, suggesting that also the affinity for negatively charged phospholipids is not affected by substitution of Asp into Gly at position at 2194.


Assuntos
Fator V/química , Fator V/genética , Alelos , Substituição de Aminoácidos , Sequência de Bases , DNA Complementar/genética , Fator V/metabolismo , Fator Va/química , Fator Va/genética , Fator Va/metabolismo , Fator Xa/química , Fator Xa/genética , Fator Xa/metabolismo , Expressão Gênica , Glicosilação , Haplótipos , Humanos , Técnicas In Vitro , Cinética , Mutagênese Sítio-Dirigida , Polimorfismo Genético , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Science ; 317(5844): 1554-7, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17872445

RESUMO

Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies. Mutagenesis studies revealed that the third constant domain is critical for this activity. The impact of IgG4 Fab arm exchange was confirmed in vivo in a rhesus monkey model with experimental autoimmune myasthenia gravis. IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Alérgenos/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos CD20/imunologia , Antígenos de Plantas , Autoanticorpos/imunologia , Receptores ErbB/imunologia , Glicoproteínas/imunologia , Humanos , Regiões Constantes de Imunoglobulina/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Cadeias Pesadas de Imunoglobulinas , Macaca mulatta , Camundongos , Mutação , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/prevenção & controle , Processamento de Proteína Pós-Traducional , Receptores Colinérgicos/imunologia
8.
J Biol Chem ; 279(8): 6567-75, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14660667

RESUMO

Activated protein C (APC) exerts its anticoagulant activity via proteolytic degradation of the heavy chains of activated factor VIII (FVIIIa) and activated factor V (FVa). So far, three APC cleavage sites have been identified in the heavy chain of FVa: Arg-306, Arg-506, and Arg-679. To obtain more insight in the structural and functional implications of each individual cleavage, recombinant factor V (rFV) mutants were constructed in which two or three of the APC cleavage sites were mutated. After expression in COS-1 cells, rFV mutants were purified, activated with thrombin, and inactivated by APC. During this study we observed that activated rFV-GQA (rFVa-GQA), in which the arginines at positions 306, 506, and 679 were replaced by glycine, glutamine, and alanine, respectively, was still inactivated by APC. Further analysis showed that the inactivation of rFVa-GQA by APC was phospholipid-dependent and sensitive to an inhibitory monoclonal antibody against protein C. Inactivation proceeded via a rapid phase (kx1=5.4 x 10(4) M(-1) s(-1)) and a slow phase (kx2=3.2 x 10(3) M(-1) s(-1)). Analysis of the inactivation curves showed that the rapid phase yielded a reaction intermediate that retained approximately 80% of the original FVa activity, whereas the slow cleavage resulted in formation of a completely inactive reaction product. Inactivation of rFVa-GQA was accelerated by protein S, most likely via stimulation of the slow phase. Immunoblot analysis using a monoclonal antibody recognizing an epitope between Arg-306 and Arg-506 indicated that during the rapid phase of inactivation a fragment of 80 kDa was generated that resulted from cleavage at a residue very close to Arg-506. The slow phase was associated with the formation of fragments resulting from cleavage at a residue 1.5-2 kDa carboxyl-terminal to Arg-306. Our observations may explain the unexpectedly mild APC resistance associated with mutations at Arg-306 (FV HongKong and FV Cambridge) in the heavy chain of FV.


Assuntos
Arginina/química , Fator VIIIa/química , Fator Va/química , Proteína C/química , Animais , Anticorpos Monoclonais/química , Sítios de Ligação , Células COS , Eletroforese em Gel de Poliacrilamida , Epitopos , Glutamina/química , Glicina/química , Humanos , Immunoblotting , Cinética , Mutagênese , Mutação , Fosfolipídeos/química , Ligação Proteica , Proteína C/metabolismo , Proteína S/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Temperatura , Trombina/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa