Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Neurobiol Dis ; 190: 106368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040383

RESUMO

In Huntington disease, cellular toxicity is particularly caused by toxic protein fragments generated from the mutant huntingtin (HTT) protein. By modifying the HTT protein, we aim to reduce proteolytic cleavage and ameliorate the consequences of mutant HTT without lowering total HTT levels. To that end, we use an antisense oligonucleotide (AON) that targets HTT pre-mRNA and induces partial skipping of exon 12, which contains the critical caspase-6 cleavage site. Here, we show that AON-treatment can partially restore the phenotype of YAC128 mice, a mouse model expressing the full-length human HTT gene including 128 CAG-repeats. Wild-type and YAC128 mice were treated intracerebroventricularly with AON12.1, scrambled AON or vehicle starting at 6 months of age and followed up to 12 months of age, when MRI was performed and mice were sacrificed. AON12.1 treatment induced around 40% exon skip and protein modification. The phenotype on body weight and activity, but not rotarod, was restored by AON treatment. Genes differentially expressed in YAC128 striatum changed toward wild-type levels and striatal volume was preserved upon AON12.1 treatment. However, scrambled AON also showed a restorative effect on gene expression and appeared to generally increase brain volume.


Assuntos
Doença de Huntington , Animais , Humanos , Camundongos , Caspase 6/genética , Caspase 6/metabolismo , Corpo Estriado/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Fenótipo
2.
Proc Natl Acad Sci U S A ; 117(25): 14482-14492, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32518112

RESUMO

Cerebral amyloid angiopathy (CAA), where beta-amyloid (Aß) deposits around cerebral blood vessels, is a major contributor of vascular dysfunction in Alzheimer's disease (AD) patients. However, the molecular mechanism underlying CAA formation and CAA-induced cerebrovascular pathology is unclear. Hereditary cerebral amyloid angiopathy (HCAA) is a rare familial form of CAA in which mutations within the (Aß) peptide cause an increase in vascular deposits. Since the interaction between Aß and fibrinogen increases CAA and plays an important role in cerebrovascular damage in AD, we investigated the role of the Aß-fibrinogen interaction in HCAA pathology. Our work revealed the most common forms of HCAA-linked mutations, Dutch (E22Q) and Iowa (D23N), resulted in up to a 50-fold stronger binding affinity of Aß for fibrinogen. In addition, the stronger interaction between fibrinogen and mutant Aßs led to a dramatic perturbation of clot structure and delayed fibrinolysis. Immunofluorescence analysis of the occipital cortex showed an increase of fibrin(ogen)/Aß codeposition, as well as fibrin deposits in HCAA patients, compared to early-onset AD patients and nondemented individuals. Our results suggest the HCAA-type Dutch and Iowa mutations increase the interaction between fibrinogen and Aß, which might be central to cerebrovascular pathologies observed in HCAA.


Assuntos
Peptídeos beta-Amiloides/genética , Encéfalo/patologia , Angiopatia Amiloide Cerebral Familiar/patologia , Fibrina/metabolismo , Fibrinogênio/metabolismo , Fragmentos de Peptídeos/genética , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral Familiar/genética , Feminino , Fibrinogênio/isolamento & purificação , Fibrinólise/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
3.
Neurobiol Dis ; 167: 105684, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247551

RESUMO

Microglia have been identified as key players in Alzheimer's disease pathogenesis, and other neurodegenerative diseases. Iba1, and more specifically TMEM119 and P2RY12 are gaining ground as presumedly more specific microglia markers, but comprehensive characterization of the expression of these three markers individually as well as combined is currently missing. Here we used a multispectral immunofluorescence dataset, in which over seventy thousand microglia from both aged controls and Alzheimer patients have been analysed for expression of Iba1, TMEM119 and P2RY12 on a single-cell level. For all markers, we studied the overlap and differences in expression patterns and the effect of proximity to ß-amyloid plaques. We found no difference in absolute microglia numbers between control and Alzheimer subjects, but the prevalence of specific combinations of markers (phenotypes) differed greatly. In controls, the majority of microglia expressed all three markers. In Alzheimer patients, a significant loss of TMEM119+-phenotypes was observed, independent of the presence of ß-amyloid plaques in its proximity. Contrary, phenotypes showing loss of P2RY12, but consistent Iba1 expression were increasingly prevalent around ß-amyloid plaques. No morphological features were conclusively associated with loss or gain of any of the markers or any of the identified phenotypes. All in all, none of the three markers were expressed by all microglia, nor can be wholly regarded as a pan- or homeostatic marker, and preferential phenotypes were observed depending on the surrounding pathological or homeostatic environment. This work could help select and interpret microglia markers in previous and future studies.


Assuntos
Doença de Alzheimer , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Placa Amiloide/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
4.
Magn Reson Med ; 87(3): 1276-1288, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34655092

RESUMO

PURPOSE: To employ an off-resonance saturation method to measure the mineral-iron pool in the postmortem brain, which is an endogenous contrast agent that can give information on cellular iron status. METHODS: An off-resonance saturation acquisition protocol was implemented on a 7 Tesla preclinical scanner, and the contrast maps were fitted to an established analytical model. The method was validated by correlation and Bland-Altman analysis on a ferritin-containing phantom. Mineral-iron maps were obtained from postmortem tissue of patients with neurological diseases characterized by brain iron accumulation, that is, Alzheimer disease, Huntington disease, and aceruloplasminemia, and validated with histology. Transverse relaxation rate and magnetic susceptibility values were used for comparison. RESULTS: In postmortem tissue, the mineral-iron contrast colocalizes with histological iron staining in all the cases. Iron concentrations obtained via the off-resonance saturation method are in agreement with literature. CONCLUSIONS: Off-resonance saturation is an effective way to detect iron in gray matter structures and partially mitigate for the presence of myelin. If a reference region with little iron is available in the tissue, the method can produce quantitative iron maps. This method is applicable in the study of diseases characterized by brain iron accumulation and can complement existing iron-sensitive parametric methods.


Assuntos
Distúrbios do Metabolismo do Ferro , Ferro , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Minerais
6.
Stroke ; 52(5): 1851-1855, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813865

RESUMO

Background and Purpose: Cortical calcifications have been reported in patients with cerebral amyloid angiopathy (CAA), although their prevalence and pathophysiology are unknown. We investigated the frequency of calcifications on computed tomography, their association with intracerebral hemorrhage (ICH) and their coexistence with a striped pattern of the occipital cortex reflecting microcalcifications on ultra-high-field 7T-magnetic resonance imaging in Dutch-type hereditary CAA (D-CAA) and sporadic CAA. Methods: We included D-CAA mutation carriers with a proven APP (amyloid precursor protein) mutation or ≥1 lobar ICH and ≥1 first-degree relative with D-CAA and sporadic CAA patients with probable CAA according to the modified Boston criteria. D-CAA carriers were regarded symptomatic when they had a history of symptomatic ICH. We assessed the presence, location, and progression of calcifications and their association with ICH and the striped occipital cortex. Results: We found cortical calcifications in 15/81 (19% [95% CI, 11­29]) D-CAA mutation carriers (15/69 symptomatic and 0/12 presymptomatic) and in 1/59 (2% [95% CI, 0­9]) sporadic CAA patients. Calcifications were all bilateral located in the occipital lobes. In 3/15 (20%) of the symptomatic D-CAA patients the calcifications progressed over a period up to 10 years. There was evidence of an association between cortical calcifications and new ICH development (hazard ratio, 7.1 [95% CI, 0.9­54.9], log-rank P=0.03). In 7/25 D-CAA symptomatic carriers in whom a 7T-magnetic resonance imaging was performed, a striped pattern of the occipital cortex was present; in 3/3 (100%) of those with calcifications on computed tomography and 4/22 (18%) of those without calcifications. Conclusions: Occipital cortical calcifications are frequent in D-CAA but seem to be rare in sporadic CAA. Their absence in presymptomatic carriers and their association with ICH might suggest that they are a marker for advanced CAA. Cortical calcifications on computed tomography seem to be associated with the striped occipital cortex on 7T-magnetic resonance imaging which may possibly represent an early stage of calcification.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Calcinose/diagnóstico por imagem , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Lobo Occipital/diagnóstico por imagem , Idoso , Calcinose/genética , Angiopatia Amiloide Cerebral/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação
7.
Neuroimage ; 245: 118752, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823024

RESUMO

AIMS: Non-invasive measures of brain iron content would be of great benefit in neurodegeneration with brain iron accumulation (NBIA) to serve as a biomarker for disease progression and evaluation of iron chelation therapy. Although magnetic resonance imaging (MRI) provides several quantitative measures of brain iron content, none of these have been validated for patients with a severely increased cerebral iron burden. We aimed to validate R2* as a quantitative measure of brain iron content in aceruloplasminemia, the most severely iron-loaded NBIA phenotype. METHODS: Tissue samples from 50 gray- and white matter regions of a postmortem aceruloplasminemia brain and control subject were scanned at 1.5 T to obtain R2*, and biochemically analyzed with inductively coupled plasma mass spectrometry. For gray matter samples of the aceruloplasminemia brain, sample R2* values were compared with postmortem in situ MRI data that had been obtained from the same subject at 3 T - in situ R2*. Relationships between R2* and tissue iron concentration were determined by linear regression analyses. RESULTS: Median iron concentrations throughout the whole aceruloplasminemia brain were 10 to 15 times higher than in the control subject, and R2* was linearly associated with iron concentration. For gray matter samples of the aceruloplasminemia subject with an iron concentration up to 1000 mg/kg, 91% of variation in R2* could be explained by iron, and in situ R2* at 3 T and sample R2* at 1.5 T were highly correlated. For white matter regions of the aceruloplasminemia brain, 85% of variation in R2* could be explained by iron. CONCLUSIONS: R2* is highly sensitive to variations in iron concentration in the severely iron-loaded brain, and might be used as a non-invasive measure of brain iron content in aceruloplasminemia and potentially other NBIA disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ceruloplasmina/deficiência , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Autopsia , Ceruloplasmina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fenótipo
8.
Neuroimage ; 215: 116808, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32289451

RESUMO

Accumulation of iron within the cortex of Alzheimer's disease (AD) patients has been reported by numerous MRI studies using iron-sensitive methods. Validation of iron-sensitive MRI is important for the interpretation of in vivo findings. In this study, the relation between the spatial iron distribution and T2∗-weighted MRI in the human brain was investigated using a direct comparison of spatial maps of iron as detected by T2∗-weighted MRI, iron histochemistry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), in postmortem brain tissue of the medial frontal gyrus of three control subjects and six AD patients. In addition, iron levels measured by LA-ICP-MS and three quantitative MRI methods, namely R2∗ (=1/T2∗), image phase and quantitative susceptibility mapping (QSM), were compared between 19 AD and 11 controls. Histochemistry results we obtained with the modified Meguro staining were highly correlated with iron levels as detected by LA-ICP-MS (r2 â€‹= â€‹0.82, P â€‹< â€‹0.0001). Significant positive correlations were also found between LA-ICP-MS and the three quantitative MRI measurements: R2∗ (r2 â€‹= â€‹0.63), image phase (r2 â€‹= â€‹0.70) and QSM (r2 â€‹= â€‹0.74 (all p â€‹< â€‹0.0001)). R2∗ and QSM showed the strongest correlation with iron content; the correlation of phase with iron clearly showed increased variation, probably due to its high orientation dependence. Despite the obvious differences in iron distribution patterns within the cortex between AD patients and controls, no overall significant differences were found in iron as measured by LA-ICP-MS, nor in R2∗, phase or susceptibility. In conclusion, our results show that histochemistry as well as quantitative MRI methods such as R2∗ mapping and QSM provide reliable measures of iron distribution in the cortex. These results support the use of MRI studies focusing on iron distribution in both the healthy and the diseased brain.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Lobo Frontal/química , Voluntários Saudáveis , Humanos , Ferro/análise , Terapia a Laser/métodos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
9.
Ann Neurol ; 86(4): 616-625, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31361916

RESUMO

OBJECTIVE: To determine whether amyloid imaging with the positron emission tomography (PET) agent Pittsburgh compound B (PiB) can detect vascular ß-amyloid (Aß) in the essentially pure form of cerebral amyloid angiopathy associated with the Dutch-type hereditary cerebral amyloid angiopathy (D-CAA) mutation. METHODS: PiB retention in a cortical composite of frontal, lateral, and retrosplenial regions (FLR) was measured by PiB-PET in 19 D-CAA mutation carriers (M+ ; 13 without neurologic symptoms, 6 with prior lobar intracerebral hemorrhage) and 17 mutation noncarriers (M- ). Progression of PiB retention was analyzed in a subset of 18 serially imaged individuals (10 asymptomatic M+ , 8 M- ). We also analyzed associations between PiB retention and cerebrospinal fluid (CSF) Aß concentrations in 17 M+ and 11 M- participants who underwent lumbar puncture and compared the findings to PiB-PET and CSF Aß in 37 autosomal dominant Alzheimer disease (ADAD) mutation carriers. RESULTS: D-CAA M+ showed greater age-dependent FLR PiB retention (p < 0.001) than M- , and serially imaged asymptomatic M+ demonstrated greater longitudinal increases (p = 0.004). Among M+ , greater FLR PiB retention associated with reduced CSF concentrations of Aß40 (r = -0.55, p = 0.021) but not Aß42 (r = 0.01, p = 0.991). Despite comparably low CSF Aß40 and Aß42, PiB retention was substantially less in D-CAA than ADAD (p < 0.001). INTERPRETATION: Increased PiB retention in D-CAA and correlation with reduced CSF Aß40 suggest this compound labels vascular amyloid, although to a lesser degree than amyloid deposits in ADAD. Progression in PiB signal over time suggests amyloid PET as a potential biomarker in trials of candidate agents for this untreatable cause of hemorrhagic stroke. ANN NEUROL 2019;86:616-625.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral Familiar/diagnóstico por imagem , Heterozigoto , Adulto , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Compostos de Anilina/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos de Casos e Controles , Angiopatia Amiloide Cerebral Familiar/líquido cefalorraquidiano , Angiopatia Amiloide Cerebral Familiar/genética , Feminino , Neuroimagem Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Tomografia por Emissão de Pósitrons , Tiazóis/metabolismo
10.
Acta Neuropathol ; 140(6): 811-830, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926214

RESUMO

Alzheimer's disease (AD) is characterized by amyloid-beta (Aß) deposits, which come in myriad morphologies with varying clinical relevance. Previously, we observed an atypical Aß deposit, referred to as the coarse-grained plaque. In this study, we evaluate the plaque's association with clinical disease and perform in-depth immunohistochemical and morphological characterization. The coarse-grained plaque, a relatively large (Ø ≈ 80 µm) deposit, characterized as having multiple cores and Aß-devoid pores, was prominent in the neocortex. The plaque was semi-quantitatively scored in the middle frontal gyrus of Aß-positive cases (n = 74), including non-demented cases (n = 15), early-onset (EO)AD (n = 38), and late-onset (LO)AD cases (n = 21). The coarse-grained plaque was only observed in cases with clinical dementia and more frequently present in EOAD compared to LOAD. This plaque was associated with a homozygous APOE ε4 status and cerebral amyloid angiopathy (CAA). In-depth characterization was done by studying the coarse-grained plaque's neuritic component (pTau, APP, PrPC), Aß isoform composition (Aß40, Aß42, AßN3pE, pSer8Aß), its neuroinflammatory component (C4b, CD68, MHC-II, GFAP), and its vascular attribution (laminin, collagen IV, norrin). The plaque was compared to the classic cored plaque, cotton wool plaque, and CAA. Similar to CAA but different from classic cored plaques, the coarse-grained plaque was predominantly composed of Aß40. Furthermore, the coarse-grained plaque was distinctly associated with both intense neuroinflammation and vascular (capillary) pathology. Confocal laser scanning microscopy (CLSM) and 3D analysis revealed for most coarse-grained plaques a particular Aß40 shell structure and a direct relation with vessels. Based on its morphological and biochemical characteristics, we conclude that the coarse-grained plaque is a divergent Aß plaque-type associated with EOAD. Differences in Aß processing and aggregation, neuroinflammatory response, and vascular clearance may presumably underlie the difference between coarse-grained plaques and other Aß deposits. Disentangling specific Aß deposits between AD subgroups may be important in the search for disease-mechanistic-based therapies.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Angiopatia Amiloide Cerebral/patologia , Placa Amiloide/patologia , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Capilares/patologia , Angiopatia Amiloide Cerebral/genética , Feminino , Humanos , Masculino , Neuritos/patologia
11.
Neuroimage ; 191: 176-185, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30739060

RESUMO

Beta amyloid is a protein fragment snipped from the amyloid precursor protein (APP). Aggregation of these peptides into amyloid plaques is one of the hallmarks of Alzheimer's disease. MR imaging of beta amyloid plaques has been attempted using various techniques, notably with T2* contrast. The non-invasive detectability of beta amyloid plaques in MR images has so far been largely attributed to focal iron deposition accompanying the plaques. It is believed that the T2* shortening effects of paramagnetic iron are the primary source of contrast between plaques and surrounding tissue. Amyloid plaque itself has been reported to induce no magnetic susceptibility effect. We hypothesized that aggregations of beta amyloid would increase electron density and induce notable changes in local susceptibility value, large enough to generate contrast relative to surrounding normal tissues that can be visualized by quantitative susceptibility mapping (QSM) MR imaging. To test this hypothesis, we first demonstrated in a phantom that beta amyloid is diamagnetic and can generate strong contrast on susceptibility maps. We then conducted experiments on a transgenic mouse model of Alzheimer's disease that is known to mimic the formation of human beta amyloid but without neurofibrillary tangles or neuronal death. Over a period of 18 months, we showed that QSM can be used to longitudinally monitor beta amyloid accumulation and accompanied iron deposition in vivo. Individual beta amyloid plaque can also be visualized ex vivo in high resolution susceptibility maps. Moreover, the measured negative susceptibility map and positive susceptibility map could provide histology-like image contrast for identifying deposition of beta amyloid plaques and iron. Finally, we demonstrated that the diamagnetic susceptibility of beta amyloid can also be observed in brain specimens of AD patients. The ability to assess beta amyloid aggregation non-invasively with QSM MR imaging may aid the diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Placa Amiloide/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Ferro/análise , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia
12.
Magn Reson Med ; 81(2): 1229-1236, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30284727

RESUMO

PURPOSE: To determine the reproducibility of quantitative susceptibility mapping at multiple sites on clinical and preclinical scanners (1.5 T, 3 T, 7 T, and 9.4 T) from different vendors (Siemens, GE, Philips, and Bruker) for standardization of multicenter studies. METHODS: Seven phantoms distributed from the core site, each containing 5 compartments with gadolinium solutions with fixed concentrations between 0.625 mM and 10 mM. Multi-echo gradient echo scans were performed at 1.5 T, 3 T, 7 T, and 9.4 T on 12 clinical and 3 preclinical scanners. DICOM images from the scans were processed into quantitative susceptibility maps using the Laplacian boundary value (LBV) and MEDI+0 automatic uniform reference algorithm. Region of interest (ROI) analyses were performed by a physicist to determine agreement between results from all sites. Measurement reproducibility was assessed using regression, Bland-Altman plots, and the intra-class correlation coefficient (ICC). RESULTS: Quantitative susceptibility mapping (QSM) from all scanners had similar, artifact-free visual appearance. Regression analysis showed a linear relationship between gadolinium concentrations and average QSM measurements for all phantoms (y = 350x - 0.0346, r2 >0.99). The SD of measurements increased almost linearly from 32 ppb to 230 ppb as the measured susceptibility increased from 0.26 ppm to 3.56 ppm. A Bland-Altman plot showed the bias, upper, and lower limits of agreement for all comparisons were -10, -210, and 200 ppb, respectively. The ICC was 0.991 with a 95% CI (0.973, 0.99). CONCLUSIONS: QSM shows excellent multicenter reproducibility for a large range of susceptibility values encountered in cranial and extra-cranial applications on a diverse set of scanner platforms.


Assuntos
Gadolínio/química , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/normas , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Ferro/análise , Reconhecimento Automatizado de Padrão , Imagens de Fantasmas , Análise de Regressão , Reprodutibilidade dos Testes , Razão Sinal-Ruído
13.
NMR Biomed ; 32(8): e4105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31172591

RESUMO

Arterial spin labeling (ASL)-MRI can noninvasively map cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), potential biomarkers of cognitive impairment and dementia. Mouse models of disease are frequently used in translational MRI studies, which are commonly performed under anesthesia. Understanding the influence of the specific anesthesia protocol used on the measured parameters is important for accurate interpretation of hemodynamic studies with mice. Isoflurane is a frequently used anesthetic with vasodilative properties. Here, the influence of three distinct isoflurane protocols was studied with pseudo-continuous ASL in two different mouse strains. The first protocol was a free-breathing set-up with medium concentrations, the second a free-breathing set-up with low induction and maintenance concentrations, and the third a set-up with medium concentrations and mechanical ventilation. A protocol with the vasoconstrictive anesthetic medetomidine was used as a comparison. As expected, medium isoflurane anesthesia resulted in significantly higher CBF and lower CVR values than medetomidine (median whole-brain CBF of 157.7 vs 84.4 mL/100 g/min and CVR of 0.54 vs 51.7% in C57BL/6 J mice). The other two isoflurane protocols lowered the CBF and increased the CVR values compared with medium isoflurane anesthesia, without obvious differences between them (median whole-brain CBF of 138.9 vs 131.7 mL/100 g/min and CVR of 10.0 vs 9.6%, in C57BL/6 J mice). Furthermore, CVR was shown to be dependent on baseline CBF, regardless of the anesthesia protocol used.


Assuntos
Anestesia , Encéfalo/fisiologia , Artérias Cerebrais/fisiologia , Hemodinâmica/efeitos dos fármacos , Isoflurano/farmacologia , Marcadores de Spin , Animais , Encéfalo/efeitos dos fármacos , Artérias Cerebrais/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL
14.
J Mol Cell Cardiol ; 125: 29-38, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30336143

RESUMO

Duchenne muscular dystrophy is a severe muscle wasting disease, characterized by a severely reduced lifespan in which cardiomyopathy is one of the leading causes of death. Multiple therapies aiming at dystrophin restoration have been approved. It is anticipated that these therapies will maintain muscle function for longer and extend the ambulatory period, which in turn will increase the cardiac workload which could be detrimental for cardiac function. We investigated the effects of voluntary running exercise in combination with low dystrophin levels on function and pathology of skeletal muscle and heart. We divided 15.5-month old female mdx (no dystrophin), mdx-XistΔhs (varying low dystrophin levels) and wild type mice (BL10-WT and XistΔhs-WT) to either a sedentary or voluntary wheel running regime and assessed muscle function at 17.5 months of age. Thereafter, a cardiac MRI was obtained, and muscle and heart histopathology were assessed. We show that voluntary exercise is beneficial to skeletal muscle and heart function in dystrophic mice while not affecting muscle pathology. Low amounts of dystrophin further improve skeletal muscle and cardiac function. These findings suggest that voluntary exercise may be beneficial for skeletal muscle and heart in DMD patients, especially in conjunction with low amounts of dystrophin.


Assuntos
Coração/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Western Blotting , Feminino , Masculino , Atividade Motora/fisiologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo
15.
Stroke ; 49(9): 2081-2087, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30354978

RESUMO

Background and Purpose- Previous studies of symptomatic and asymptomatic hereditary cerebral amyloid angiopathy (CAA) patients offered the possibility to study the radiological manifestations of CAA in the early stages of the disease. Recently, a striped cortex, observable as hypointense lines perpendicular to the pial surface on T2*-weighted 7T magnetic resonance imaging (MRI), was detected in 40% of the symptomatic hereditary CAA patients. However, the origin of these MRI contrast changes is unknown. This study aimed at defining the underlying pathology associated with the in vivo observed striped pattern. Methods- Formalin-fixed postmortem brain material including the occipital lobe of 4 hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) cases and 6 sporadic CAA cases were selected from local neuropathology tissue collections. Depending on the availability of the material, intact hemispheres or brain slabs including the occipital lobe of these patients were screened for the presence of a striped cortex. Regions containing the striped cortex were then subjected to high-resolution 7T MRI and histopathologic examination. Results- We found 2 hereditary cerebral hemorrhage with amyloidosis-Dutch type cases and 1 sporadic CAA case with striped patterns in the occipital cortex resembling the in vivo signal. Histopathologic examination showed that the striped pattern in the cortex at 7T MRI is because of iron accumulation and calcification of penetrating arteries. The presence of both nonheme iron and calcification on penetrating arteries causes signal loss and hence the abnormal striped patterns in the cortical ribbon on T2*-weighted MRI. Conclusions- We identified iron accumulation and calcification of the vessel wall in hereditary cerebral hemorrhage with amyloidosis-Dutch type as the histopathologic correlates of the striped cortex observed on in vivo 7T MRI.


Assuntos
Angiopatia Amiloide Cerebral Familiar/diagnóstico por imagem , Ferro/metabolismo , Lobo Occipital/diagnóstico por imagem , Calcificação Vascular/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Angiopatia Amiloide Cerebral Familiar/metabolismo , Angiopatia Amiloide Cerebral Familiar/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Occipital/metabolismo , Lobo Occipital/patologia , Calcificação Vascular/patologia
17.
NMR Biomed ; 31(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160952

RESUMO

The cerebral blood flow (CBF) is a potential biomarker for neurological disease. However, the arterial transit time (ATT) of the labeled blood is known to potentially affect CBF quantification. Furthermore, ATT could be an interesting biomarker in itself, as it may reflect underlying macro- and microvascular pathologies. Currently, no optimized magnetic resonance imaging (MRI) sequence exists to measure ATT in mice. Recently, time-encoded labeling schemes have been implemented in rats and humans, enabling ATT mapping with higher signal-to-noise ratio (SNR) and shorter scan time than multi-delay arterial spin labeling (ASL). In this study, we show that time-encoded pseudo-continuous arterial spin labeling (te-pCASL) also enables transit time measurements in mice. As an optimal design that takes the fast blood flow in mice into account, time encoding with 11 sub-boli of 50 ms is proposed to accurately probe the inflow of labeled blood. For perfusion imaging, a separate, traditional pCASL scan was employed. From the six studied brain regions, the hippocampus showed the shortest ATT (169 ± 11 ms) and the auditory/visual cortex showed the longest (284 ± 16 ms). Furthermore, ATT was found to be preserved in old wild-type mice. In a mouse with an induced carotid artery occlusion, prolongation of ATT was shown. In conclusion, this study shows the successful implementation of te-pCASL in mice, making it possible, for the first time, to measure ATT in mice in a time-efficient manner.


Assuntos
Artérias/fisiologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Envelhecimento/fisiologia , Animais , Arteriopatias Oclusivas/fisiopatologia , Artérias Carótidas/fisiopatologia , Imageamento por Ressonância Magnética , Camundongos , Processamento de Sinais Assistido por Computador , Fatores de Tempo
18.
J Magn Reson Imaging ; 47(6): 1487-1497, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29193569

RESUMO

BACKGROUND: Retinoblastoma is the most common intraocular tumor in childhood with a good prognosis in terms of mortality, but detailed information about tumor morphology and disease extent in retinoblastoma is important for treatment decision making. PURPOSE: To demonstrate ultrahigh-field MRI tumor morphology and tumor extent in retinoblastoma correlating with in and ex vivo images with histopathology. STUDY TYPE: Prospective case series. POPULATION: Six retinoblastoma patients (median age 5.5 months, range 2-14) were prospectively included in this study. Median time between diagnosis and enucleation was 8 days (range 7-19). FIELD STRENGTH/SEQUENCE: In vivo pre-enucleation at 1.5T MRI with a circular surface coil. Ex vivo imaging (FLASH T1 -weighted and RARE T2 -weighted) was performed at field strengths of 9.4T and 17.6T. ASSESSMENT: After ex vivo imaging, the eyes were histopathologically analyzed and morphologically matched with MRI findings by three authors (two with respectively 14 and 4 years of experience in ocular MRI and one with 16 years of experience in ophthalmopathology). RESULTS: Small submillimeter morphological aspects of intraocular retinoblastoma were successfully depicted with higher-resolution MRI and matched with histopathology images. With ex vivo MRI a small subretinal tumor seed (300 µm) adjacent to the choroid was morphologically matched with histopathology. Also, a characteristic geographical pattern of vital tumor tissue (400 µm) surrounding a central vessel interspersed with necrotic areas correlated with histopathology images. Tumor invasion into the optic nerve showed a higher signal intensity on T1 -weighted higher-resolution MRI. DATA CONCLUSION: Higher-resolution MRI allows for small morphological aspects of intraocular retinoblastoma and extraocular disease extent not visible on currently used clinical in vivo MRI to be depicted. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1487-1497.


Assuntos
Neoplasias Oculares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Retinoblastoma/diagnóstico por imagem , Corioide/anatomia & histologia , Corioide/diagnóstico por imagem , Tomada de Decisões , Neoplasias Oculares/fisiopatologia , Humanos , Lactente , Masculino , Variações Dependentes do Observador , Nervo Óptico/anatomia & histologia , Nervo Óptico/diagnóstico por imagem , Prognóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Retinoblastoma/fisiopatologia , Esclera/anatomia & histologia , Esclera/diagnóstico por imagem , Manejo de Espécimes
19.
Neuroimage ; 147: 1-9, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27777173

RESUMO

The ability to administer systemically high doses of manganese as contrast agent while circumventing its toxicity is of particular interest for exploratory MRI studies of the brain. Administering low doses either repeatedly or continuously over time has been shown to enable the acquisition of satisfactory MRI images of the mouse brain without apparent side effects. Here we have systematically compared the obtained MRI contrast and recorded potential systemic side effects such as stress response and muscle strength impairment in relation to the achieved contrast. We show in mice that administering MnCl2 via osmotic infusion pumps allows for a side-effect free delivery of a high cumulative dose of manganese chloride (480mg/kg bodyweight in 8 days). High contrast in MRI was achieved while we did not observe the weight loss or distress seen in other studies where mice received manganese via fractionated intraperitoneal injections of lower doses of manganese. As the normal daily conduct of the mice was not affected, this new manganese delivery method might be of particular use to study brain activity over several days. This may facilitate the phenotyping of new transgenic mouse models, the study of chronic disease models and the monitoring of changes in brain activity in long-term behavioral studies.


Assuntos
Cloretos/administração & dosagem , Cloretos/farmacologia , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/administração & dosagem , Compostos de Manganês/farmacologia , Animais , Cloretos/efeitos adversos , Meios de Contraste/efeitos adversos , Corticosterona/sangue , Aumento da Imagem , Bombas de Infusão , Infusões Intravenosas , Injeções Intraperitoneais , Masculino , Compostos de Manganês/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/efeitos dos fármacos , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/psicologia , Redução de Peso/efeitos dos fármacos
20.
Bioorg Med Chem ; 24(23): 6139-6148, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838168

RESUMO

Detection of cerebral ß-amyloid (Aß) by targeted contrast agents is of great interest for in vivo diagnosis of Alzheimer's disease (AD). Partly because of their planar structure several bis-styrylbenzenes have been previously reported as potential Aß imaging agents. However, these compounds are relatively hydrophobic, which likely limits their in vivo potential. Based on their structures, we hypothesized that less hydrophobic bis-pyridylethenylbenzenes may also label amyloid. We synthesized several bis-pyridylethenylbenzenes and tested whether these compounds indeed display improved solubility and lower LogP values, and studied their fluorescent properties and Aß binding characteristics. Bis-pyridylethenylbenzenes showed a clear affinity for Aß plaques on both human and murine AD brain sections. Competitive binding experiments suggested a different binding site than Chrysamine G, a well-known stain for amyloid. With a LogP value between 3 and 5, most bis-pyridylethenylbenzenes were able to enter the brain and label murine amyloid in vivo with the bis(4-pyridylethenyl)benzenes showing the most favorable characteristics. In conclusion, the presented results suggest that bis-pyridylethenylbenzene may serve as a novel backbone for amyloid imaging agents.


Assuntos
Peptídeos beta-Amiloides/química , Meios de Contraste/química , Corantes Fluorescentes/química , Placa Amiloide/diagnóstico por imagem , Piridinas/química , Estirenos/química , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Meios de Contraste/síntese química , Corantes Fluorescentes/síntese química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos Transgênicos , Microscopia de Fluorescência , Imagem Molecular , Ligação Proteica , Piridinas/síntese química , Solubilidade , Estilbenos/química , Estirenos/síntese química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa