Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(6): 1437-1451.e14, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491387

RESUMO

CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retroelementos , Animais , Sítios de Ligação , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Células-Tronco Embrionárias/citologia , Camundongos , Ligação Proteica , Domínios Proteicos
2.
Cell ; 169(4): 693-707.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475897

RESUMO

The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetiltransferases/metabolismo , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Elongases de Ácidos Graxos , Edição de Genes , Humanos , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Coesinas
3.
Mol Cell ; 81(10): 2216-2230.e10, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33848455

RESUMO

DNA double-strand break (DSB) repair is mediated by multiple pathways. It is thought that the local chromatin context affects the pathway choice, but the underlying principles are poorly understood. Using a multiplexed reporter assay in combination with Cas9 cutting, we systematically measure the relative activities of three DSB repair pathways as a function of chromatin context in >1,000 genomic locations. This reveals that non-homologous end-joining (NHEJ) is broadly biased toward euchromatin, while the contribution of microhomology-mediated end-joining (MMEJ) is higher in specific heterochromatin contexts. In H3K27me3-marked heterochromatin, inhibition of the H3K27 methyltransferase EZH2 reverts the balance toward NHEJ. Single-stranded template repair (SSTR), often used for precise CRISPR editing, competes with MMEJ and is moderately linked to chromatin context. These results provide insight into the impact of chromatin on DSB repair pathway balance and guidance for the design of Cas9-mediated genome editing experiments.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Sequência de Bases , Reparo do DNA por Junção de Extremidades , Eucromatina/metabolismo , Rearranjo Gênico , Genoma Humano , Heterocromatina/metabolismo , Humanos , Mutação INDEL/genética , Células K562 , Cinética , Ligação Proteica , Reprodutibilidade dos Testes
4.
Nat Methods ; 21(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049699

RESUMO

Gene expression programs result from the collective activity of numerous regulatory factors. Studying their cooperative mode of action is imperative to understand gene regulation, but simultaneously measuring these factors within one sample has been challenging. Here we introduce Multiplexing Antibodies by barcode Identification (MAbID), a method for combinatorial genomic profiling of histone modifications and chromatin-binding proteins. MAbID employs antibody-DNA conjugates to integrate barcodes at the genomic location of the epitope, enabling combined incubation of multiple antibodies to reveal the distributions of many epigenetic markers simultaneously. We used MAbID to profile major chromatin types and multiplexed measurements without loss of individual data quality. Moreover, we obtained joint measurements of six epitopes in single cells of mouse bone marrow and during mouse in vitro differentiation, capturing associated changes in multifactorial chromatin states. Thus, MAbID holds the potential to gain unique insights into the interplay between gene regulatory mechanisms, especially for low-input samples and in single cells.


Assuntos
Cromatina , Histonas , Camundongos , Animais , Cromatina/genética , Histonas/metabolismo , Imunoprecipitação da Cromatina/métodos , Código das Histonas , Processamento de Proteína Pós-Traducional , Epigênese Genética
5.
Mol Cell ; 76(5): 724-737.e5, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31629658

RESUMO

Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/química , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Cromossomos/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Humanos , Complexos Multiproteicos/fisiologia , Ligação Proteica/fisiologia , Subunidades Proteicas/metabolismo , Coesinas
6.
BMC Genomics ; 16: 357, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943489

RESUMO

BACKGROUND: Since the completion of the rat reference genome in 2003, whole-genome sequencing data from more than 40 rat strains have become available. These data represent the broad range of strains that are used in rat research including commonly used substrains. Currently, this wealth of information cannot be used to its full extent, because the variety of different variant calling algorithms employed by different groups impairs comparison between strains. In addition, all rat whole genome sequencing studies to date used an outdated reference genome for analysis (RGSC3.4 released in 2004). RESULTS: Here we present a comprehensive, multi-sample and uniformly called set of genetic variants in 40 rat strains, including 19 substrains. We reanalyzed all primary data using a recent version of the rat reference assembly (RGSC5.0 released in 2012) and identified over 12 million genomic variants (SNVs, indels and structural variants) among the 40 strains. 28,318 SNVs are specific to individual substrains, which may be explained by introgression from other unsequenced strains and ongoing evolution by genetic drift. Substrain SNVs may have a larger predicted functional impact compared to older shared SNVs. CONCLUSIONS: In summary we present a comprehensive catalog of uniformly analyzed genetic variants among 40 widely used rat inbred strains based on the RGSC5.0 assembly. This represents a valuable resource, which will facilitate rat functional genomic research. In line with previous observations, our genome-wide analyses do not show evidence for contribution of multiple ancestral founder rat subspecies to the currently used rat inbred strains, as is the case for mouse. In addition, we find that the degree of substrain variation is highly variable between strains, which is of importance for the correct interpretation of experimental data from different labs.


Assuntos
Genômica , Ratos/genética , Animais , Cães , Evolução Molecular , Deriva Genética , Mutação INDEL , Camundongos , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
7.
Nat Struct Mol Biol ; 29(10): 1000-1010, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220895

RESUMO

Precise control of gene expression underpins normal development. This relies on mechanisms that enable communication between gene promoters and other regulatory elements. In embryonic stem cells (ESCs), the cyclin-dependent kinase module Mediator complex (CKM-Mediator) has been reported to physically link gene regulatory elements to enable gene expression and also prime genes for induction during differentiation. Here, we show that CKM-Mediator contributes little to three-dimensional genome organization in ESCs, but it has a specific and essential role in controlling interactions between inactive gene regulatory elements bound by Polycomb repressive complexes (PRCs). These interactions are established by the canonical PRC1 (cPRC1) complex but rely on CKM-Mediator, which facilitates binding of cPRC1 to its target sites. Importantly, through separation-of-function experiments, we reveal that this collaboration between CKM-Mediator and cPRC1 in creating long-range interactions does not function to prime genes for induction during differentiation. Instead, we discover that priming relies on an interaction-independent mechanism whereby the CKM supports core Mediator engagement with gene promoters during differentiation to enable gene activation.


Assuntos
Complexo Mediador , Complexo Repressor Polycomb 1 , Diferenciação Celular/genética , Quinases Ciclina-Dependentes/metabolismo , Complexo Mediador/genética , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
8.
Nat Commun ; 13(1): 754, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136067

RESUMO

The genome consists of regions of transcriptionally active euchromatin and more silent heterochromatin. We reveal that the formation of heterochromatin domains requires cohesin turnover on DNA. Stabilization of cohesin on DNA through depletion of its release factor WAPL leads to a near-complete loss of heterochromatin domains. We observe the opposite phenotype in cells deficient for subunits of the Mediator-CDK module, with an almost binary partition of the genome into dense H3K9me3 domains, and regions devoid of H3K9me3 spanning the rest of the genome. We suggest that the Mediator-CDK module might contribute to gene expression by limiting the formation of dense heterochromatin domains. WAPL deficiency prevents the formation of heterochromatin domains, and allows for gene expression even in the absence of the Mediator-CDK subunit MED12. We propose that cohesin and Mediator affect heterochromatin in different ways to enable the correct distribution of epigenetic marks, and thus to ensure proper gene expression.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Complexo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Epigênese Genética , Técnicas de Inativação de Genes , Humanos , Complexo Mediador/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , RNA-Seq , Coesinas
9.
NAR Genom Bioinform ; 3(2): lqab040, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34046591

RESUMO

Conformation capture-approaches like Hi-C can elucidate chromosome structure at a genome-wide scale. Hi-C datasets are large and require specialised software. Here, we present GENOVA: a user-friendly software package to analyse and visualise chromosome conformation capture (3C) data. GENOVA is an R-package that includes the most common Hi-C analyses, such as compartment and insulation score analysis. It can create annotated heatmaps to visualise the contact frequency at a specific locus and aggregate Hi-C signal over user-specified genomic regions such as ChIP-seq data. Finally, our package supports output from the major mapping-pipelines. We demonstrate the capabilities of GENOVA by analysing Hi-C data from HAP1 cell lines in which the cohesin-subunits SA1 and SA2 were knocked out. We find that ΔSA1 cells gain intra-TAD interactions and increase compartmentalisation. ΔSA2 cells have longer loops and a less compartmentalised genome. These results suggest that cohesinSA1 forms longer loops, while cohesinSA2 plays a role in forming and maintaining intra-TAD interactions. Our data supports the model that the genome is provided structure in 3D by the counter-balancing of loop formation on one hand, and compartmentalization on the other hand. By differentially controlling loops, cohesinSA1 and cohesinSA2 therefore also affect nuclear compartmentalization. We show that GENOVA is an easy to use R-package, that allows researchers to explore Hi-C data in great detail.

10.
Curr Opin Genet Dev ; 55: 39-45, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31112906

RESUMO

Early in development embryos undergo a transition, during which maternally deposited transcripts are replaced by zygotic transcripts. During this transition the zygotic genome is activated. Recently, the three-dimensional organization of the genome (3D genome) has been charted surrounding this transition phase in a number of species. A common feature of the 3D genome in all these species is that they go through a phase, during which architectural features of the 3D genome, such as TADs and compartments are lost and a uniform chromatin architecture is established. Here, we review the data regarding this enigmatic phase and discuss similarities and differences between species. We also consider mechanisms that may be responsible for the formation of the uniform chromatin architecture. The uniform organization of chromosomes during early development may serve as an important in vivo paradigm for the general study of the 3D genome.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromossomos/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Animais , Cromossomos/metabolismo , Embrião de Mamíferos/citologia , Humanos , Transcrição Gênica
11.
Nat Genet ; 51(7): 1160-1169, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31253979

RESUMO

Most of the millions of SNPs in the human genome are non-coding, and many overlap with putative regulatory elements. Genome-wide association studies (GWAS) have linked many of these SNPs to human traits or to gene expression levels, but rarely with sufficient resolution to identify the causal SNPs. Functional screens based on reporter assays have previously been of insufficient throughput to test the vast space of SNPs for possible effects on regulatory element activity. Here we leveraged the throughput and resolution of the survey of regulatory elements (SuRE) reporter technology to survey the effect of 5.9 million SNPs, including 57% of the known common SNPs, on enhancer and promoter activity. We identified more than 30,000 SNPs that alter the activity of putative regulatory elements, partially in a cell-type-specific manner. Integration of this dataset with GWAS results may help to pinpoint SNPs that underlie human traits.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Polimorfismo de Nucleotídeo Único , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Estudo de Associação Genômica Ampla , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , Fenótipo , Locos de Características Quantitativas , Fatores de Transcrição/genética
12.
Cell Rep ; 24(1): 1-10.e4, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972771

RESUMO

The spatial organization of chromosomes is critical in establishing gene expression programs. We generated in situ Hi-C maps throughout zebrafish development to gain insight into higher-order chromatin organization and dynamics. Zebrafish chromosomes segregate in active and inactive chromatin (A/B compartments), which are further organized into topologically associating domains (TADs). Zebrafish A/B compartments and TADs have genomic features similar to those of their mammalian counterparts, including evolutionary conservation and enrichment of CTCF binding sites at TAD borders. At the earliest time point, when there is no zygotic transcription, the genome is highly structured. After zygotic genome activation (ZGA), the genome loses structural features, which are re-established throughout early development. Despite the absence of structural features, we see clustering of super-enhancers in the 3D genome. Our results provide insight into vertebrate genome organization and demonstrate that the developing zebrafish embryo is a powerful model system to study the dynamics of nuclear organization.


Assuntos
Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Elementos Facilitadores Genéticos/genética , Epigenômica , Genoma , Código das Histonas
13.
PLoS One ; 11(8): e0160036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27501045

RESUMO

Unmapped next-generation sequencing reads are typically ignored while they contain biologically relevant information. We systematically analyzed unmapped reads from whole genome sequencing of 33 inbred rat strains. High quality reads were selected and enriched for biologically relevant sequences; similarity-based analysis revealed clustering similar to previously reported phylogenetic trees. Our results demonstrate that on average 20% of all unmapped reads harbor sequences that can be used to improve reference genomes and generate hypotheses on potential genotype-phenotype relationships. Analysis pipelines would benefit from incorporating the described methods and reference genomes would benefit from inclusion of the genomic segments obtained through these efforts.


Assuntos
Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ratos Endogâmicos/genética , Análise de Sequência de DNA/métodos , Animais , Feminino , Masculino , Anotação de Sequência Molecular , Filogenia , Ratos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa