Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
BMC Genomics ; 22(1): 265, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849459

RESUMO

BACKGROUND: Bacterial plant pathogens of the Pectobacterium genus are responsible for a wide spectrum of diseases in plants, including important crops such as potato, tomato, lettuce, and banana. Investigation of the genetic diversity underlying virulence and host specificity can be performed at genome level by using a comprehensive comparative approach called pangenomics. A pangenomic approach, using newly developed functionalities in PanTools, was applied to analyze the complex phylogeny of the Pectobacterium genus. We specifically used the pangenome to investigate genetic differences between virulent and avirulent strains of P. brasiliense, a potato blackleg causing species dominantly present in Western Europe. RESULTS: Here we generated a multilevel pangenome for Pectobacterium, comprising 197 strains across 19 species, including type strains, with a focus on P. brasiliense. The extensive phylogenetic analysis of the Pectobacterium genus showed robust distinct clades, with most detail provided by 452,388 parsimony-informative single-nucleotide polymorphisms identified in single-copy orthologs. The average Pectobacterium genome consists of 47% core genes, 1% unique genes, and 52% accessory genes. Using the pangenome, we zoomed in on differences between virulent and avirulent P. brasiliense strains and identified 86 genes associated to virulent strains. We found that the organization of genes is highly structured and linked with gene conservation, function, and transcriptional orientation. CONCLUSION: The pangenome analysis demonstrates that evolution in Pectobacteria is a highly dynamic process, including gene acquisitions partly in clusters, genome rearrangements, and loss of genes. Pectobacterium species are typically not characterized by a set of species-specific genes, but instead present themselves using new gene combinations from the shared gene pool. A multilevel pangenomic approach, fusing DNA, protein, biological function, taxonomic group, and phenotypes, facilitates studies in a flexible taxonomic context.


Assuntos
Pectobacterium , Solanum tuberosum , Europa (Continente) , Pool Gênico , Pectobacterium/genética , Filogenia , Doenças das Plantas , Solanum tuberosum/genética
2.
Plant Dis ; 105(3): 542-547, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33021904

RESUMO

Bacterial blotch is one of the most economically important diseases of button 'mushroom. Knowledge of mechanisms of disease expression, inoculum thresholds, and disease management is limited to the most well-known pathogen, Pseudomonas tolaasii. Recent outbreaks in Europe have been attributed to 'P. gingeri' and P. salomonii for ginger and brown blotch, respectively. Information about their identity, infection dynamics, and pathogenicity is largely lacking. The disease pressure in an experimental mushroom cultivation facility was evaluated for 'P. gingeri' and P. salomonii over varying inoculation densities, casing soil types, environmental humidity, and cultivation cycles. The pathogen population structures in the casing soils were simultaneously tracked across the cropping cycle using highly specific and sensitive TaqMan-quantitative PCR assays. 'P. gingeri' caused disease outbreaks at lower inoculum thresholds (104 CFU/g) in the soil than P. salomonii (105 CFU/g). Ginger blotch generically declined in later harvest cycles, although brown blotch did not. Casing soils were differentially suppressive to blotch diseases, based on their composition and supplementation. Endemic pathogen populations increased across the cultivation cycle although the inoculated pathogen populations were consistent between the first and second flush. In conclusion, 'P. gingeri' and P. salomonii have unique infection and population dynamics that vary over soil types. Their endemic populations are also differently abundant in peat-based casing soils. This knowledge is essential for interpreting diagnostic results from screening mushroom farms and designing localized disease control strategies.


Assuntos
Zingiber officinale , Agaricus , Europa (Continente) , Dinâmica Populacional , Prevalência , Pseudomonas
3.
Mol Plant Microbe Interact ; 33(7): 872-875, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240065

RESUMO

Ralstonia solanacearum, the causal agent of bacterial wilt and brown rot disease, is one of the major pathogens of solanaceous crops, including potato, around the globe. Biovar 2T (phylotype II/sequevar 25) of R. solanacearum is adapted to tropical lowlands and is only reported in South America and Iran. Thus far, no genome resource of the biovar 2T of the pathogen has been available. Here, we present the near-complete genome sequences of the biovar 2T strain CFBP 8697 as well as strain CFBP 8695 belonging to biovar 2 race 3, both isolated from potato in Iran. The genomic data of biovar 2T will extend our understanding of the virulence features of R. solanacearum and pave the way for research on biovar 2T functional and interaction genetics.


Assuntos
Genoma Bacteriano , Doenças das Plantas/microbiologia , Ralstonia solanacearum , Solanum tuberosum/microbiologia , Irã (Geográfico) , Filogenia , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade
4.
BMC Genomics ; 21(1): 505, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698767

RESUMO

BACKGROUND: Bacterial blotch is a group of economically important diseases affecting the cultivation of common button mushroom, Agaricus bisporus. Despite being studied for more than a century, the identity and nomenclature of blotch-causing Pseudomonas species is still unclear. This study aims to molecularly characterize the phylogenetic and phenotypic diversity of blotch pathogens in Western Europe. METHODS: In this study, blotched mushrooms were sampled from farms across the Netherlands, United Kingdom and Belgium. Bacteria were isolated from symptomatic cap tissue and tested in pathogenicity assays on fresh caps and in pots. Whole genome sequences of pathogenic and non-pathogenic isolates were used to establish phylogeny via multi-locus sequence alignment (MLSA), average nucleotide identity (ANI) and in-silico DNA:DNA hybridization (DDH) analyses. RESULTS: The known pathogens "Pseudomonas gingeri", P. tolaasii, "P. reactans" and P. costantinii were recovered from blotched mushroom caps. Seven novel pathogens were also identified, namely, P. yamanorum, P. edaphica, P. salomonii and strains that clustered with Pseudomonas sp. NC02 in one genomic species, and three non-pseudomonads, i.e. Serratia liquefaciens, S. proteamaculans and a Pantoea sp. Insights on the pathogenicity and symptom severity of these blotch pathogens were also generated. CONCLUSION: A detailed overview of genetic and regional diversity and the virulence of blotch pathogens in Western Europe, was obtained via the phylogenetic and phenotypic analyses. This information has implications in the study of symptomatic disease expression, development of diagnostic tools and design of localized strategies for disease management.


Assuntos
Agaricus , Agaricus/genética , Bélgica , Europa (Continente) , Filogenia , Pseudomonas/genética , Reino Unido
5.
Int J Syst Evol Microbiol ; 70(4): 2440-2448, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100697

RESUMO

Pectobacterium strains isolated from potato stems in Finland, Poland and the Netherlands were subjected to polyphasic analyses to characterize their genomic and phenotypic features. Phylogenetic analysis based on 382 core proteins showed that the isolates clustered closest to Pectobacterium polaris but could be divided into two clades. Average nucleotide identity (ANI) analysis revealed that the isolates in one of the clades included the P. polaris type strain, whereas the second clade was at the border of the species P. polaris with a 96 % ANI value. In silico genome-to-genome comparisons between the isolates revealed values below 70%, patristic distances based on 1294 core proteins were at the level observed between closely related Pectobacterium species, and the two groups of bacteria differed in genome size, G+C content and results of amplified fragment length polymorphism and Biolog analyses. Comparisons between the genomes revealed that the isolates of the atypical group contained SPI-1-type Type III secretion island and genes coding for proteins known for toxic effects on nematodes or insects, and lacked many genes coding for previously characterized virulence determinants affecting rotting of plant tissue by soft rot bacteria. Furthermore, the atypical isolates could be differentiated from P. polaris by their low virulence, production of antibacterial metabolites and a citrate-negative phenotype. Based on the results of a polyphasic approach including genome-to-genome comparisons, biochemical and virulence assays, presented in this report, we propose delineation of the atypical isolates as a novel species Pectobacterium parvum, for which the isolate s0421T (CFBP 8630T=LMG 30828T) is suggested as a type strain.


Assuntos
Pectobacterium/classificação , Filogenia , Solanum tuberosum/microbiologia , Sistemas de Secreção Tipo III , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Finlândia , Países Baixos , Pectobacterium/isolamento & purificação , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Polônia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Virulência
6.
Phytopathology ; 110(10): 1647-1656, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32401153

RESUMO

Bacterial wilt and brown rot disease caused by Ralstonia solanacearum species complex (RSSC) is one of the major constraints of potato (Solanum tuberosum) production around the globe. During 2017 to 2018, an extensive field survey was conducted in six potato-growing provinces of Iran to monitor the status of bacterial wilt disease. Pathogenicity and host range assays using 59 bacterial strains isolated in Iran showed that they were pathogenic on eggplant, red nightshade, pepper, potato and tomato, while nonpathogenic on common bean, cowpea, cucumber, sunflower, zinnia and zucchini. PCR-based diagnosis revealed that the strains belong to the phylotype IIB/sequevar 1 (IIB/I) lineage of the RSSC. Furthermore, a five-gene multilocus sequence analysis and typing (egl, fliC, gyrB, mutS, and rplB) confirmed the phylogenetically near-homogeneous nature of the strains within IIB/I lineage. Four sequence types were identified among 58 IIB/1 strains isolated in Iran. Phylogenetically near-homogeneous nature of the strains in Iran raise questions about the mode of inoculum entry of the bacterial wilt pathogen into the country (one-time introduction versus multiple introductions), while the geographic origin of the Iranian R. solanacearum strains remains undetermined. Furthermore, sequence typing showed that there were shared alleles (haplotypes) and sequence types among the strains isolated in geographically distant areas in Iran, suggesting intranational transmission of the pathogen in the country.


Assuntos
Ralstonia solanacearum/genética , Solanum tuberosum , Ecótipo , Irã (Geográfico) , Filogenia , Doenças das Plantas
7.
Plant Dis ; 103(4): 645-655, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30777801

RESUMO

Xylella fastidiosa is a heterogenous gram-negative bacterial plant pathogen with a wide host range covering over 300 plant species. Since 2013, in Europe, the presence of the pathogen is increasing in a part of the Mediterranean area, but it causes in particular severe disease problems in olive orchards in the Southern part of Italy. Various subspecies of the pathogen were also diagnosed in natural outbreaks and intercepted ornamental plants in Europe, among them Olea europaea, Coffea arabica, and Nerium oleander. The host range of the pathogen can vary, depending on the subspecies and even the strain. The availability of fast and reliable diagnostic tools is indispensable in management strategies to control diseases caused by X. fastidiosa. To improve the reliability of the TaqMan assay, currently widely used in surveys, a triplex TaqMan assay was developed in which two specific and sensitive TaqMan assays, previously designed for X. fastidiosa, were combined with an internal control. The triplex assay exhibited the same diagnostic sensitivity as the simplex assays. In addition, the usefulness of a metagenomic approach using next-generation sequencing (NGS) was demonstrated, in which total DNA extracted from plant material was sequenced. DNA extracts from plant material free of X. fastidiosa, from artificially inoculated hosts plants or from naturally infected plants sampled in France, Spain, and Italy, or intercepted in Austria and the Netherlands, were analyzed for the presence of X. fastidiosa using the metagenomic approach. In all samples, even in samples with a low infection level, but not in the pathogen-free samples, DNA reads were detected specific for X. fastidiosa. In most cases, the pathogen could be identified to the subspecies level, and for one sample even the whole genome could be assembled and the sequence type could be determined. All results of NGS-analyzed samples were confirmed with the triplex TaqMan polymerase chain reaction and loop-mediated isothermal amplification.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Análise de Sequência , Xylella , Europa (Continente) , Doenças das Plantas/microbiologia , Plantas/microbiologia , Reprodutibilidade dos Testes , Xylella/genética , Xylella/fisiologia
8.
Plant Dis ; 102(2): 300-308, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673530

RESUMO

The pathogenic gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. is the most harmful bacterium to tomatoes in many countries with a cooler climate. Multilocus sequence analysis was performed on five housekeeping genes (bipA, gyrB, kdpA, ligA, and sdhA) and three virulence-related genes (ppaA, chpC, and tomA) to determine evolutionary relationships and population structure of 108 C. michiganensis subsp. michiganensis strains collected from Turkey between 1996 and 2012. Based on these analyses, we concluded that C. michiganensis subsp. michiganensis in Turkey is highly uniform. However, at least four novel C. michiganensis subsp. michiganensis strains were recently introduced, possibly at the beginning of the 1990s. The singletons might point to additional sources or to strains that have evolved locally in Turkey.


Assuntos
Actinomycetales/genética , Genes Bacterianos , Genes Essenciais , Tipagem de Sequências Multilocus , Turquia
9.
Plant Dis ; 99(1): 4-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30699746

RESUMO

Clavibacter michiganensis subsp. michiganensis is the causal agent of bacterial canker of tomato. The disease was first described in 1910 in Michigan, USA. C. michiganensis subsp. michiganensis (from now on called clavibacter) was initially thought to be a phloem parasite, but was later found to be a xylem-invading bacterium. The host range comprises mainly solanaceous crops such as tomato, pepper, and eggplant. Strains show great variability in virulence and are usually described as being hypervirulent, hypovirulent, or nonvirulent. Clavibacter lacks a type III secretion system, and only a few virulence factors have been experimentally determined from the many putative virulence factors. As the molecular mode of infection by clavibacter is unknown, researchers have avoided intensive work on this organism. Genetic plant mechanisms conferring resistance to clavibacter are apparently complex, and breeders have yet to develop disease-resistant cultivars.

10.
Int J Syst Evol Microbiol ; 64(Pt 3): 768-774, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24225027

RESUMO

Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus Dickeya, previously the Pectobacterium chrysanthemi complex (Erwinia chrysanthemi), on the basis of production of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of E. chrysanthemi, showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus Dickeya. The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA. Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA-DNA hybridization studies, showed that although related to Dickeya dadantii, these isolates represent a novel species within the genus Dickeya, for which the name Dickeya solani sp. nov. (type strain IPO 2222(T) = LMG25993(T) = NCPPB4479(T)) is proposed.


Assuntos
Enterobacteriaceae/classificação , Pectinas/metabolismo , Filogenia , Solanum tuberosum/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Europa (Continente) , Ácidos Graxos/química , Genes Bacterianos , Indóis/metabolismo , Israel , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Sci Total Environ ; 901: 166181, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572894

RESUMO

Agricultural aquifer storage recovery and transfer (ASTR) stores excess fresh water for later reuse in irrigation. Moreover, water quality improves because chemical pollutants and pathogens will be removed by degradation and attachment to the aquifer material. The source water may contain the bacterial plant pathogen Ralstonia solanacearum which causes plant infections and high yield losses. We used quantitative microbial risk assessment (QMRA) to investigate the removal of R. solanacearum during ASTR to predict infection risks of potato plants after irrigation with the recovered water. Laboratory experiments analyzed the ASTR treatment by investigating the bacterial die-off in the water phase and the removal by attachment to the aquifer sediment. Die-off in the water phase depends on the residence time and ranged between 1.3 and 2.7 log10 after 10 or 60 days water storage, respectively. A subpopulation of the bacteria persisted for a prolonged time at low concentrations which may pose a risk if the water is recovered too early. However, the natural aquifer sand filtration proofed to be highly effective in removing R. solanacearum by attachment which depends on the distance between injection and abstraction well. The high removal by attachment alone (18 log10 after 1 m) would reduce bacterial concentrations to negligible numbers. Upscaling to longer soil passages is discussed in the paper. Infection risks of potato plants were calculated using a dose-response model and ASTR treatment resulted in negligible infection risks of a single plant, but also when simulating the irrigation of a 5 ha potato field. This is the first QMRA that analyzed an agricultural ASTR and the fate of a plant pathogen focusing on plant health. QMRA is a useful (water) management tool to evaluate the treatment steps of water reclamation technologies with the aim to provide safe irrigation water and reduce risks disseminating plant diseases.

12.
Front Plant Sci ; 14: 1082094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324660

RESUMO

Tomato bacterial canker caused by Clavibacter michiganensis (Cm) is considered to be one of the most destructive bacterial diseases of tomato. To date, no resistance to the pathogen has been identified. While several molecular studies have identified (Cm) bacterial factors involved in disease development, the plant genes and mechanisms associated with susceptibility of tomato to the bacterium remain largely unknown. Here, we show for the first time that tomato gene SlWAT1 is a susceptibility gene to Cm. We inactivated the gene SlWAT1 through RNAi and CRISPR/Cas9 to study changes in tomato susceptibility to Cm. Furthermore, we analysed the role of the gene in the molecular interaction with the pathogen. Our findings demonstrate that SlWAT1 functions as an S gene to genetically diverse Cm strains. Inactivation of SlWAT1 reduced free auxin contents and ethylene synthesis in tomato stems and suppressed the expression of specific bacterial virulence factors. However, CRISPR/Cas9 slwat1 mutants exhibited severe growth defects. The observed reduced susceptibility is possibly a result of downregulation of bacterial virulence factors and reduced auxin contents in transgenic plants. This shows that inactivation of an S gene may affect the expression of bacterial virulence factors.

13.
Microorganisms ; 11(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630640

RESUMO

P. brasiliense is an important bacterial pathogen causing blackleg (BL) in potatoes. Nevertheless, P. brasiliense is often detected in seed lots that do not develop any of the typical blackleg symptoms in the potato crop when planted. Field bioassays identified that P. brasiliense strains can be categorized into two distinct classes, some able to cause blackleg symptoms and some unable to do it. A comparative pangenomic approach was performed on 116 P. brasiliense strains, of which 15 were characterized as BL-causing strains and 25 as non-causative. In a genetically homogeneous clade comprising all BL-causing P. brasiliense strains, two genes only present in the BL-causing strains were identified, one encoding a predicted lysozyme inhibitor Lprl (LZI) and one encoding a putative Toll/interleukin-1 receptor (TIR) domain-containing protein. TaqMan assays for the specific detection of BL-causing P. brasiliense were developed and integrated with the previously developed generic P. brasiliense assay into a triplex TaqMan assay. This simultaneous detection makes the scoring more efficient as only a single tube is needed, and it is more robust as BL-causing strains of P. brasiliense should be positive for all three assays. Individual P. brasiliense strains were found to be either positive for all three assays or only for the P. brasiliense assay. In potato samples, the mixed presence of BL-causing and not BL-causing P. brasiliense strains was observed as shown by the difference in Ct value of the TaqMan assays. However, upon extension of the number of strains, it became clear that in recent years additional BL-causing lineages of P. brasiliense were detected for which additional assays must be developed.

14.
J Bacteriol ; 194(24): 6999-7000, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23209245

RESUMO

Serratia plymuthica A30 is a Gram-negative bacterium expressing antagonistic activity toward blackleg- and soft rot-causing Dickeya sp. biovar 3 ("Dickeya solani"). Here, we present the draft genome sequence of strain A30, which has been isolated from rotten potato tuber tissue.


Assuntos
Genoma Bacteriano , Tubérculos/microbiologia , Serratia/genética , Solanum tuberosum/microbiologia , Composição de Bases , Agentes de Controle Biológico , DNA Bacteriano/genética , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , RNA Bacteriano/genética , Análise de Sequência de DNA
15.
Microorganisms ; 10(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630466

RESUMO

The wide host range phytopathogen D. dianthicola, first described in ornamentals in the 1950s, rapidly became a threat for potato production in Europe and, more recently, worldwide. Previous genomic analyses, mainly of strains isolated from potato, revealed little sequence diversity. To further analyse D. dianthicola genomic diversity, we used a larger genome panel of 41 isolates encompassing more strains isolated from potato over a wide time scale and more strains isolated from other hosts. The phylogenetic and pan-genomic trees revealed a large cluster of highly related genomes but also the divergence of two more distant strains, IPO 256 and 67.19, isolated from potato and impatiens, respectively, and the clustering of the three strains isolated from Kalanchoe with one more distinct potato strain. An SNP-based minimal spanning tree highlighted both diverse clusters of (nearly) clonal strains and several strains scattered in the MST, irrespective of country or date of isolation, that differ by several thousand SNPs. This study reveals a higher diversity in D. dianthicola than previously described. It indicates the clonal spread of this pathogen over long distances, as suspected from worldwide seed trading, and possible multiple introductions of D. dianthicola from alternative sources of contaminations.

16.
Microorganisms ; 10(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36557757

RESUMO

Information on the infection incidence of blackleg-causing soft rot Pectobacteriaceae (BL-SRP) in potato crops grown from minitubers (PB1-crop) and the distribution of BL-SRP in individual plants was collected during a two-year survey conducted at five potato growers located in the Netherlands. In the last weeks before haulm destruction, leaves, stems, and tubers of 100 or 200 plants were analyzed separately for the presence of Pectobacterium parmentieri, P. brasiliense, P. atrosepticum, and Dickeya spp. Extracted plant parts enriched for BL-SRP were analyzed with TaqMan assays specific for the detection of blackleg-causing BL-SRP. In 2019, low incidences of P. parmentieri (1-6%) in leaves were found at four growing sites. At one farm, reactions were detected in TaqMan assays for D. zeae and D. chrysanthemi in leaves. In 2020, the crops of two growers were largely free from BL-SRP. At one farm, a high infection incidence (21%) was found for D. fangzhongdai in tubers. The isolated pathogen was able to cause potato blackleg. At two other farms, high infection incidences in tubers were found with P. brasiliense (35-39%) and P. parmentieri (12-19%), whereas the incidence of P. brasiliense in leaves was also high (8%). In conclusion, high infection incidences with BL-SRP in potatoes can be found in a PB1 crop at the end of the growing season. Infections in individual plants were found either in tubers or in leaves. The potential sources of initial infection are discussed.

17.
Trends Plant Sci ; 27(1): 69-79, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400073

RESUMO

Plants have evolved complex defence mechanisms to avoid invasion of potential pathogens. Despite this, adapted pathogens deploy effector proteins to manipulate host susceptibility (S) genes, rendering plant defences ineffective. The identification and mutation of plant S genes exploited by bacterial pathogens are important for the generation of crops with durable and broad-spectrum resistance. Application of mutant S genes in the breeding of resistant crops is limited because of potential pleiotropy. New genome editing techniques open up new possibilities for the modification of S genes. In this review, we focus on S genes manipulated by bacteria and propose ways for their identification and precise modification. Finally, we propose that genes coding for transporter proteins represent a new group of S genes.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença , Bactérias/genética , Produtos Agrícolas/genética , Resistência à Doença/genética , Genoma de Planta , Melhoramento Vegetal , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética
18.
Water Res ; 220: 118724, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696807

RESUMO

Irrigation with surface water carrying plant pathogens poses a risk for agriculture. Managed aquifer recharge enhances fresh water availability while simultaneously it may reduce the risk of plant diseases by removal of pathogens during aquifer passage. We compared the transport of three plant pathogenic bacteria with Escherichia coli WR1 as reference strain in saturated laboratory column experiments filled with quartz sand, or sandy aquifer sediments. E. coli showed the highest removal, followed by Pectobacterium carotovorum, Dickeya solani and Ralstonia solanacearum. Bacterial and non-reactive tracer breakthrough curves were fitted with Hydrus-1D and compared with colloid filtration theory (CFT). Bacterial attachment to fine and medium aquifer sand under anoxic conditions was highest with attachment rates of max. katt1 = 765 day-1 and 355 day-1, respectively. Attachment was the least to quartz sand under oxic conditions (katt1 = 61 day-1). In CFT, sticking efficiencies were higher in aquifer than in quartz sand but there was no differentiation between fine and medium aquifer sand. Overall removal ranged between < 6.8 log10 m-1 in quartz and up to 40 log10 m-1 in fine aquifer sand. Oxygenation of the anoxic aquifer sediments for two weeks with oxic influent water decreased the removal. The results highlight the potential of natural sand filtration to sufficiently remove plant pathogenic bacteria during aquifer storage.


Assuntos
Filtração , Água Subterrânea , Quartzo , Dickeya/isolamento & purificação , Escherichia coli , Filtração/métodos , Sedimentos Geológicos , Água Subterrânea/microbiologia , Pectobacterium carotovorum/isolamento & purificação , Ralstonia solanacearum/isolamento & purificação , Areia , Água
19.
Mol Plant Pathol ; 23(7): 911-932, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35142424

RESUMO

BACKGROUND: Bacterial ring rot of potato (Solanum tuberosum) caused by the gram-positive coryneform bacterium Clavibacter sepedonicus is an important quarantine disease threatening the potato industry around the globe. Since its original description in 1906 in Germany, management of ring rot has been a major problem due to the seedborne nature (via seed tubers not true seeds) of the pathogen allowing the bacterium to be transmitted long distances via infected tubers. DISEASE SYMPTOMS: On growing potato plants: interveinal chlorosis on leaflets leading to necrotic areas and systemic wilt. On infected tubers: vascular tissues become yellowish brown with a cheesy texture due to bacterial colonization and decay. HOST RANGE: Potato is the main host of the pathogen, but natural infection also occurs on eggplant, tomato, and sugar beet. TAXONOMIC STATUS OF THE PATHOGEN: Class: Actinobacteria; Order: Actinomycetales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter sepedonicus (Spieckermann and Kotthoff 1914) Li et al. 2018. SYNONYMS (NONPREFERRED SCIENTIFIC NAMES): Aplanobacter sepedonicus; Bacterium sepedonicum; Corynebacterium sepedonicum; Corynebacterium michiganense pv. sepedonicum; Clavibacter michiganensis subsp. sepedonicus. MICROBIOLOGICAL PROPERTIES: Gram-positive, club-shaped cells with creamy to yellowish-cream colonies for which the optimal growth temperature is 20-23°C. DISTRIBUTION: Asia (China, Japan, Kazakhstan, Nepal, North Korea, Pakistan, South Korea, Uzbekistan, the Asian part of Russia), Europe (Belarus, Bulgaria, Czech Republic, Estonia, Finland, Georgia, Germany, Greece, Hungary, Latvia, Lithuania, Norway, Poland, Romania, European part of Russia, Slovakia, Spain, Sweden, Turkey, Ukraine), and North America (Canada, Mexico, USA). PHYTOSANITARY CATEGORIZATION: CORBSE: EPPO A2 list no. 51. EU; Annex designation I/A2.


Assuntos
Actinomycetales , Solanum tuberosum , Clavibacter , Tubérculos , Solanum tuberosum/microbiologia
20.
Front Plant Sci ; 13: 1074192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36937141

RESUMO

Ralstonia solanacearum is the causative agent of bacterial wilt of potato and other vegetable crops. Contaminated irrigation water contributes to the dissemination of this pathogen but the exact concentration or biological threshold to cause an infection is unknown. In two greenhouse experiments, potted potato plants (Solanum tuberosum) were exposed to a single irrigation with 50 mL water (non-invasive soil-soak inoculation) containing no or 102 - 108 CFU/mL R. solanacearum. The disease response of two cultivars, Kondor and HB, were compared. Disease development was monitored over a three-month period after which stems, roots and tubers of asymptomatic plants were analyzed for latent infections. First wilting symptoms were observed 15 days post inoculation in a plant inoculated with 5x109 CFU and a mean disease index was used to monitor disease development over time. An inoculum of 5x105 CFU per pot (1.3x102 CFU/g soil) was the minimum dose required to cause wilting symptoms, while one latent infection was detected at the lowest dose of 5x102 CFU per pot (0.13 CFU/g). In a second set of experiments, stem-inoculated potato plants grown in vitro were used to investigate the dose-response relationship under optimal conditions for pathogen growth and disease development. Plants were inoculated with doses between 0.5 and 5x105 CFU/plant which resulted in visible symptoms at all doses. The results led to a dose-response model describing the relationship between R. solanacearum exposure and probability of infection or illness of potato plants. Cultivar Kondor was more susceptible to brown-rot infections than HB in greenhouse experiments while there was no significant difference between the dose-response models of both cultivars in in vitro experiments. The ED50 for infection of cv Kondor was 1.1x107 CFU. Results can be used in management strategies aimed to reduce or eliminate the risk of bacterial wilt infection when using treated water in irrigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa