Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Wildl Dis ; 60(2): 298-305, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329747

RESUMO

White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has decimated bat populations across North America. Despite ongoing management programs, WNS continues to expand into new populations, including in US states previously thought to be free from the pathogen and disease. This expansion highlights a growing need for surveillance tools that can be used to enhance existing monitoring programs and support the early detection of P. destructans in new areas. We evaluated the feasibility of using a handheld, field-portable, real-time (quantitative) PCR (qPCR) thermocycler known as the Biomeme two3 and the associated field-based nucleic acid extraction kit and assay reagents for the detection of P. destructans in little brown bats (Myotis lucifugus). Results from the field-based protocol using the Biomeme platform were compared with those from a commonly used laboratory-based qPCR protocol. When using dilutions of known conidia concentrations, the lowest detectable concentration with the laboratory-based approach was 108.8 conidia/mL, compared with 1,087.5 conidia/mL (10 times higher, i.e., one fewer 10× dilution) using the field-based approach. Further comparisons using field samples suggest a high level of concordance between the two protocols, with positive and negative agreements of 98.2% and 100% respectively. The cycle threshold values were marginally higher for most samples using the field-based protocol. These results are an important step in establishing and validating a rapid, field-assessable detection platform for P. destructans, which is urgently needed to improve the surveillance and monitoring capacity for WNS and support on-the-ground management and response efforts.


Assuntos
Ascomicetos , Quirópteros , Animais , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Quirópteros/microbiologia , Ascomicetos/genética , Nariz/microbiologia , Síndrome
2.
Front Public Health ; 10: 1042647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590003

RESUMO

Many SARS-CoV-2 variants have emerged during the course of the COVID-19 pandemic. These variants have acquired mutations conferring phenotypes such as increased transmissibility or virulence, or causing diagnostic, therapeutic, or immune escape. Detection of Alpha and the majority of Omicron sublineages by PCR relied on the so-called S gene target failure due to the deletion of six nucleotides coding for amino acids 69-70 in the spike (S) protein. Detection of hallmark mutations in other variants present in samples relied on whole genome sequencing. However, whole genome sequencing as a diagnostic tool is still in its infancy due to geographic inequities in sequencing capabilities, higher cost compared to other molecular assays, longer turnaround time from sample to result, and technical challenges associated with producing complete genome sequences from samples that have low viral load and/or high background. Hence, there is a need for rapid genotyping assays. In order to rapidly generate information on the presence of a variant in a given sample, we have created a panel of four triplex RT-qPCR assays targeting 12 mutations to detect and differentiate all five variants of concern: Alpha, Beta, Gamma, Delta, and Omicron. We also developed an expanded pentaplex assay that can reliably distinguish among the major sublineages (BA.1-BA.5) of Omicron. In silico, analytical and clinical testing of the variant panel indicate that the assays exhibit high sensitivity and specificity. This panel can help fulfill the need for rapid identification of variants in samples, leading to quick decision making with respect to public health measures, as well as treatment options for individuals. Compared to sequencing, these genotyping PCR assays allow much faster turn-around time from sample to results-just a couple hours instead of days or weeks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/diagnóstico , Reação em Cadeia da Polimerase
3.
Insects ; 12(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34940224

RESUMO

Studies of tickborne illness have benefited from interactions between scientists and community members. Most participants in community science projects are well-educated adults, but there are anticipated benefits from engaging younger students in research. We evaluated whether an outreach experience for rural middle-school students promoted student interest in science and resulted in the generation of samples that could be used for tick testing to assess disease risk. Middle-school students from 78 Wisconsin communities developed interdisciplinary hypotheses about the spread of Lyme disease, identified ticks, and extracted DNA from ticks to assess the prevalence of pathogens Borrelia burgdorferi, Anaplasma phagocytophillium, and Babesia microti. As a result of this intervention, students were able to successfully complete the research protocol and explain the rationale for completing the experiment. Of student participants, 84.7% reported no difficulty completing the protocol, 66% of the student samples gave reliable PCR results, and 76% of students reported interest in participating in similar experiments. Our study shows that tick outreach programs that incorporate community-based science promote knowledge about Lyme disease, facilitate engagement between students and scientists, and generate samples that can be successfully utilized for pathogen testing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa