Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(9): 4108-4123, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35416402

RESUMO

The consequences of soils exposed to hydraulic fracturing (HF) return fluid, often collectively termed flowback and produced water (FPW), are poorly understood, even though soils are a common receptor of FPW spills. Here, we investigate the impacts on soil microbiota exposed to FPW collected from the Montney Formation of western Canada. We measured soil respiration, microbial community structure and functional potentials under FPW exposure across a range of concentrations, exposure time and soil types (luvisol and chernozem). We find that soil type governs microbial community response upon FPW exposure. Within each soil, FPW exposure led to reduced biotic soil respiration, and shifted microbial community structure and functional potentials. We detect substantially higher species richness and more unique functional genes in FPW-exposed soils than in FPW-unexposed soils, with metagenome-assembled genomes (e.g. Marinobacter persicus) from luvisol soil exposed to concentrated FPW being most similar to genomes from HF/FPW sites. Our data demonstrate the complex impacts of microbial communities following FPW exposure and highlight the site-specific effects in evaluation of spills and agricultural reuse of FPW on the normal soil functions.


Assuntos
Fraturamento Hidráulico , Microbiota , Poluentes Químicos da Água , Microbiota/genética , Respiração , Solo , Microbiologia do Solo , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
2.
Environ Geochem Health ; 42(2): 397-405, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31309375

RESUMO

Asphalt concrete is one of the most important building materials in the modern world, but the leaching potential of metals from this composite material to the environment is poorly understood. In this study, metals leaching from four hot-mix asphalt samples were analyzed: two fresh samples of low-traffic and high-traffic composition and their weathered equivalents collected from roads in the city of Edmonton, Alberta, Canada. A sequential extraction, based on the Community Bureau of Reference method, was applied to study the speciation and potential mobility of metals and metalloids in those samples. Major trace metals identified in all four samples were Mn, P, Ba, Sr, Zn, V, and Ni, with the highest metals concentrations generally found in weathered asphalt concrete. Of the major trace metals, P, Mn, Sr, and Zn were relatively mobile, having large portions of their total concentrations in the exchangeable/acid-soluble and reducible fractions. When considering the most mobile fraction (exchangeable/acid soluble) and using Canada as a model country, up to 180 t P, 440 t Mn, 50 t Ba, 36 t Sr, 11 t Zn, and 0.11-3.2 t of other metals and metalloids (including Cr, Ni, Cu, As, and Pb) could potentially leach from the top layer of Canada's total of paved public roads. To place these amounts into perspective, they were estimated to make up to 22‰ of Canada's annual release numbers into soil, water and air for these same metals and metalloids. However, they are concentrated in a small area around roads and highways, creating the potential for localized soil and groundwater contamination.


Assuntos
Hidrocarbonetos/química , Poluentes do Solo/análise , Oligoelementos/análise , Alberta , Cidades , Materiais de Construção/análise , Monitoramento Ambiental , Poluentes do Solo/química , Oligoelementos/química , Tempo (Meteorologia)
3.
Environ Sci Technol ; 50(22): 12266-12274, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27768274

RESUMO

Hundreds of tons of depleted uranium (DU) ammunition were used in previous armed conflicts in Iraq, Bosnia and Herzegovina, and Serbia/Kosovo. The majority (>90%) of DU penetrators miss their target and, if left in the environment, corrode in these postconflict zones. Thus, the best way to understand the fate of bulk DU material in the environment is to characterize the corrosion products of intact DU penetrators under field conditions for extended periods of time. However, such studies are scarce. To fill this knowledge gap, we characterized corrosion products formed from two intact DU penetrators that remained in soils in Bosnia and Herzegovina for over seven years. We used a combination of X-ray powder diffraction, electron microscopy, and X-ray absorption spectroscopy. The results show that metaschoepite (UO3(H2O)2) was a main component of the two DU corrosion products. Moreover, studtite ((UO2)O2(H2O)2·2(H2O)) and becquerelite (Ca(UO2)6O4(OH)6·8(H2O)) were also identified in the corrosion products. Their formation through transformation of metaschoepite was a result of the geochemical conditions under which the penetrators corroded. Moreover, we propose that the transformation of metaschoepite to becquerelite or studtite in the DU corrosion products would decrease the potential for mobilization of U from corroded DU penetrators exposed to similar environments in postconflict areas.


Assuntos
Solo , Urânio/química , Bósnia e Herzegóvina , Corrosão , Poluentes Radioativos do Solo
4.
J Hazard Mater ; 368: 578-583, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30711706

RESUMO

Municipal solid waste conversion into biofuels via gasification is one of the latest technologies to divert waste from landfills. The byproduct of the process is a carbonaceous material, which is often tainted with polycyclic aromatic hydrocarbons (PAH) such as naphthalene that can leach into the environment and have toxic effects on aquatic organisms. In this paper, we present a novel method to address the issue of leachable naphthalene in a carbonaceous waste produced from a gasification process, using a magnetic sorbent. The sorbent was fabricated by the coprecipitation of iron oxide nanoparticles on an organophilic clay under atmospheric conditions. The characterization results show that the intercalated nanoparticles are predominantly magnetite with a diameter of 15-20 nm, and increase the clay specific surface area from 0.4 to 17 m2 g-1. Toxicity characteristic leaching procedure results indicate that the magnetic composite has a high naphthalene inhibition efficiency comparable to that of the original clay. As opposed to the clay alone, the magnetic hybrid can be separated from the carbonaceous waste with a magnet, regenerated by heat treatment, and reused without compromising its naphthalene removal efficiency. Thus, these composites may provide a cost-effective method to curtail leaching of PAH from contaminated carbonaceous waste.

5.
Environ Sci Process Impacts ; 21(2): 242-255, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30556566

RESUMO

Public concern is heightened around flowback and produced water (FPW) generated by the hydraulic fracturing process. FPW is a complex mix of organic and inorganic solutes derived from both the injected hydraulic fracturing fluid and interactions with the subsurface lithology. Few studies to date have systematically investigated the composition of FPW or its individual components. Here, we provide the first systematic characterization of the composition of the solids associated with FPW by analyzing samples from three wells drilled into the Duvernay Formation in Alberta, Canada. The FPW initially returned to the surface with high total dissolved solids (greater than 170 000 mg L-1) and enriched with Fe(ii), silica, sulfate, barium, and strontium. The solids form two distinct phases once the FPW reached the surface: (1) silica-enriched Fe(iii) oxyhydroxides, and (2) a barite-celestine solid solution. We hypothesize that the precipitation of the amorphous silica-enriched Fe(iii) oxyhydroxide is a two-step process, where first the silica precipitates as a function of the cooling of the FPW from elevated subsurface temperatures to ambient surface temperatures. Next, the silica acts as a template for the precipitation of Fe(iii) oxyhydroxide as the diffusion of oxygen into the subsurface causes oxidation of aqueous Fe(ii). The barite-celestine solid solution precipitates solely as a function of cooling. Elevated dissolved Fe concentrations in FPW and modeled saturation indices from five North American shale plays (Marcellus, Fayetteville, Barnett, Bakken, and Denver-Julesburg) indicate that solids similar to those found in Duvernay FPW, specifically Fe(iii) oxyhydroxides, barite and quartz, are likely to occur. With the solids known to carry a significant portion of FPW's toxicity and organic contaminant load, the development of new treatment technologies, such as the oxidation of the Fe(ii) in FPW, may increase FPW reuse and reduce the environmental risk posed by FPW.


Assuntos
Fraturamento Hidráulico , Águas Residuárias/toxicidade , Poluentes Químicos da Água/análise , Alberta , Compostos Férricos
6.
Environ Microbiol Rep ; 10(6): 663-672, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30014579

RESUMO

Forest rings are 50-1600 m diameter circular structures found in boreal forests around the globe. They are believed to be chemically reducing chimney features, having an accumulation of reduced species in the middle of the ring and oxidation processes occurring at the ring's edges. It has been suggested that microorganisms could be responsible for charge transfer from the inside to the outside of the ring. To explore this, we focused on the changes in bacterial and archaeal communities in the ring edges of two forest rings, the 'Bean' and the 'Thorn North' ring, in proximity to each other in Ontario, Canada. The drier samples from the methane-sourced Bean ring were characterized by the abundance of bacteria from the classes Deltaproteobacteria and Gemmatimonadetes. Geobacter spp. and methanotrophs, such as Candidatus Methylomirabilis and Methylobacter, were highly abundant in these samples. The Thorn North ring, centred on an H2 S accumulation in groundwater, had wetter samples and its communities were dominated by the classes Alphaproteobacteria and Anaerolineae. This ring's microbial communities showed an overall higher microbial diversity supported by higher available free energy. For both rings, the species diversity was highest near the borders of the 20-30 m broad ring edges.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Transporte de Elétrons/fisiologia , Microbiologia do Solo , Taiga , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Metabolismo Energético , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/metabolismo , Metano/análise , Metano/metabolismo , Ontário , RNA Ribossômico 16S/genética , Solo/química
7.
Bioresour Technol ; 236: 106-110, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28391104

RESUMO

A modified Community Bureau of Reference (CBR) sequential extraction method was tested to assess the composition of untreated pyrogenic carbon (biochar) and oil sands petroleum coke. Wood biochar samples were found to contain lower concentrations of metals, but had higher fractions of easily mobilized alkaline earth and transition metals. Sewage sludge biochar was determined to be less recalcitrant and had higher total metal concentrations, with most of the metals found in the more resilient extraction fractions (oxidizable, residual). Petroleum coke was the most stable material, with a similar metal distribution pattern as the sewage sludge biochar. The applied sequential extraction method represents a suitable technique to recover metals from these materials, and is a valuable tool in understanding the metal retaining and leaching capability of various biochar types and carbonaceous petroleum coke samples.


Assuntos
Coque , Petróleo , Metais Pesados , Campos de Petróleo e Gás , Esgotos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa