Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 164, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075558

RESUMO

BACKGROUND: The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold. RESULTS: Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib1 and xib13 with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib1 and xib13 increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib13 either originates from the common ancestor of pancrustaceans or earlier while xib1 is more restricted to remipedes. The ten-cysteine scaffolded xib2 emerged from xib1, a result that is supported by our phylogenetic and machine learning-based analyses. CONCLUSIONS: Our functional characterization of synthesized variants of xib1, xib2, and xib13 elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib2 with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib1 and xib13 activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib1, xib2, and xib13 requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib2 from xib1. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.


Assuntos
Canais de Potássio , Animais , Canais de Potássio/metabolismo , Canais de Potássio/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Filogenia , Camundongos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Evolução Molecular , Humanos , Venenos de Artrópodes/química
2.
Heredity (Edinb) ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39278996

RESUMO

We present a reference genome assembly from an individual male Violet Carpenter Bee (Xylocopa violacea, Linnaeus 1758). The assembly is 1.02 gigabases in span. 48% of the assembly is scaffolded into 17 pseudo-chromosomal units. The mitochondrial genome has also been assembled and is 21.8 kilobases in length. The genome is highly repetitive, likely representing a highly heterochromatic architecture expected of bees from the genus Xylocopa. We also use an evidence-based methodology to annotate 10,152 high confidence coding genes. This genome was sequenced as part of the pilot project of the European Reference Genome Atlas (ERGA) and represents an important addition to the genomic resources available for Hymenoptera.

3.
BMC Biol ; 21(1): 229, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867198

RESUMO

BACKGROUND: Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. RESULTS: Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. CONCLUSIONS: Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.


Assuntos
Venenos de Abelha , Abelhas/genética , Animais , Perfilação da Expressão Gênica , Transcriptoma , Genômica , Duplicação Gênica
4.
BMC Evol Biol ; 20(1): 144, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148176

RESUMO

BACKGROUND: Phylogenetic relationships among the myriapod subgroups Chilopoda, Diplopoda, Symphyla and Pauropoda are still not robustly resolved. The first phylogenomic study covering all subgroups resolved phylogenetic relationships congruently to morphological evidence but is in conflict with most previously published phylogenetic trees based on diverse molecular data. Outgroup choice and long-branch attraction effects were stated as possible explanations for these incongruencies. In this study, we addressed these issues by extending the myriapod and outgroup taxon sampling using transcriptome data. RESULTS: We generated new transcriptome data of 42 panarthropod species, including all four myriapod subgroups and additional outgroup taxa. Our taxon sampling was complemented by published transcriptome and genome data resulting in a supermatrix covering 59 species. We compiled two data sets, the first with a full coverage of genes per species (292 single-copy protein-coding genes), the second with a less stringent coverage (988 genes). We inferred phylogenetic relationships among myriapods using different data types, tree inference, and quartet computation approaches. Our results unambiguously support monophyletic Mandibulata and Myriapoda. Our analyses clearly showed that there is strong signal for a single unrooted topology, but a sensitivity of the position of the internal root on the choice of outgroups. However, we observe strong evidence for a clade Pauropoda+Symphyla, as well as for a clade Chilopoda+Diplopoda. CONCLUSIONS: Our best quartet topology is incongruent with current morphological phylogenies which were supported in another phylogenomic study. AU tests and quartet mapping reject the quartet topology congruent to trees inferred with morphological characters. Moreover, quartet mapping shows that confounding signal present in the data set is sufficient to explain the weak signal for the quartet topology derived from morphological characters. Although outgroup choice affects results, our study could narrow possible trees to derivatives of a single quartet topology. For highly disputed relationships, we propose to apply a series of tests (AU and quartet mapping), since results of such tests allow to narrow down possible relationships and to rule out confounding signal.


Assuntos
Artrópodes , Filogenia , Animais , Artrópodes/classificação , Artrópodes/genética , Transcriptoma
5.
Mar Drugs ; 18(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752210

RESUMO

Nemerteans (ribbon worms) employ toxins to subdue their prey, but research thus far has focused on the small-molecule components of mucus secretions and few protein toxins have been characterized. We carried out a preliminary proteotranscriptomic analysis of putative toxins produced by the hoplonemertean Amphiporus lactifloreus (Hoplonemertea, Amphiporidae). No variants were found of known nemertean-specific toxin proteins (neurotoxins, cytotoxins, parbolysins or nemertides) but several toxin-like transcripts were discovered, expressed strongly in the proboscis, including putative metalloproteinases and sequences resembling sea anemone actitoxins, crown-of-thorn sea star plancitoxins, and multiple classes of inhibitor cystine knot/knottin family proteins. Some of these products were also directly identified in the mucus proteome, supporting their preliminary identification as secreted toxin components. Two new nemertean-typical toxin candidates could be described and were named U-nemertotoxin-1 and U-nemertotoxin-2. Our findings provide insight into the largely overlooked venom system of nemerteans and support a hypothesis in which the nemertean proboscis evolved in several steps from a flesh-melting organ in scavenging nemerteans to a flesh-melting and toxin-secreting venom apparatus in hunting hoplonemerteans.


Assuntos
Perfilação da Expressão Gênica , Invertebrados/genética , Invertebrados/metabolismo , Toxinas Marinhas/genética , Toxinas Marinhas/metabolismo , Proteoma , Proteômica , Transcriptoma , Animais , Bases de Dados Genéticas
6.
Mol Biol Evol ; 31(1): 48-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24132120

RESUMO

Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, and Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes, and hymenopterans. Surprisingly, despite their great diversity of body plans, there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind, and cave-dwelling remipede crustaceans are venomous and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a nontoxin paralog of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin and underlines the importance of incorporating data derived from nonvenom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions, and spiders and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species.


Assuntos
Crustáceos/genética , Neurotoxinas/toxicidade , Transcriptoma/genética , Peçonhas/química , Sequência de Aminoácidos , Animais , Crustáceos/classificação , Evolução Molecular , Perfilação da Expressão Gênica , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Peçonhas/genética
7.
FASEB J ; 27(12): 4745-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23964076

RESUMO

Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next-generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early- and late-feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample-specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG-secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite-vector interaction of I. ricinus.


Assuntos
Ixodes/química , Glândulas Salivares/metabolismo , Transcriptoma , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Ixodes/genética , Ixodes/metabolismo , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de DNA
8.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-39250076

RESUMO

Research on animal venoms and their components spans multiple disciplines, including biology, biochemistry, bioinformatics, pharmacology, medicine, and more. Manipulating and analyzing the diverse array of data required for venom research can be challenging, and relevant tools and resources are often dispersed across different online platforms, making them less accessible to nonexperts. In this article, we address the multifaceted needs of the scientific community involved in venom and toxin-related research by identifying and discussing web resources, databases, and tools commonly used in this field. We have compiled these resources into a comprehensive table available on the VenomZone website (https://venomzone.expasy.org/10897). Furthermore, we highlight the challenges currently faced by researchers in accessing and using these resources and emphasize the importance of community-driven interdisciplinary approaches. We conclude by underscoring the significance of enhancing standards, promoting interoperability, and encouraging data and method sharing within the venom research community.


Assuntos
Big Data , Biologia Computacional , Internet , Peçonhas , Animais , Biologia Computacional/métodos , Bases de Dados Factuais
9.
BMC Bioinformatics ; 14: 348, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24299043

RESUMO

BACKGROUND: Character matrices with extensive missing data are frequently used in phylogenomics with potentially detrimental effects on the accuracy and robustness of tree inference. Therefore, many investigators select taxa and genes with high data coverage. Drawbacks of these selections are their exclusive reliance on data coverage without consideration of actual signal in the data which might, thus, not deliver optimal data matrices in terms of potential phylogenetic signal. In order to circumvent this problem, we have developed a heuristics implemented in a software called mare which (1) assesses information content of genes in supermatrices using a measure of potential signal combined with data coverage and (2) reduces supermatrices with a simple hill climbing procedure to submatrices with high total information content. We conducted simulation studies using matrices of 50 taxa × 50 genes with heterogeneous phylogenetic signal among genes and data coverage between 10-30%. RESULTS: With matrices of 50 taxa × 50 genes with heterogeneous phylogenetic signal among genes and data coverage between 10-30% Maximum Likelihood (ML) tree reconstructions failed to recover correct trees. A selection of a data subset with the herein proposed approach increased the chance to recover correct partial trees more than 10-fold. The selection of data subsets with the herein proposed simple hill climbing procedure performed well either considering the information content or just a simple presence/absence information of genes. We also applied our approach on an empirical data set, addressing questions of vertebrate systematics. With this empirical dataset selecting a data subset with high information content and supporting a tree with high average boostrap support was most successful if information content of genes was considered. CONCLUSIONS: Our analyses of simulated and empirical data demonstrate that sparse supermatrices can be reduced on a formal basis outperforming the usually used simple selections of taxa and genes with high data coverage.


Assuntos
Algoritmos , Classificação/métodos , Evolução Molecular , Filogenia , Animais , Bovinos , Simulação por Computador , Reparo do DNA/genética , Humanos , Funções Verossimilhança , Camundongos , Probabilidade , Distribuição Aleatória , Ratos , Transdução de Sinais/genética , Software , Máquina de Vetores de Suporte , Sus scrofa
10.
BMC Evol Biol ; 13: 119, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758940

RESUMO

BACKGROUND: Remipedia were initially seen as a primitive taxon within Pancrustacea based on characters considered ancestral, such as the homonomously segmented trunk. Meanwhile, several morphological and molecular studies proposed a more derived position of Remipedia within Pancrustacea, including a sister group relationship to Hexapoda. Because of these conflicting hypotheses, fresh data are crucial to contribute new insights into euarthropod phylogeny. The architecture of individually identifiable serotonin-immunoreactive neurons has successfully been used for phylogenetic considerations in Euarthropoda. Here, we identified neurons in three species of Remipedia with an antiserum against serotonin and compared our findings to reconstructed ground patterns in other euarthropod taxa. Additionally, we traced neurite connectivity and neuropil outlines using antisera against acetylated α-tubulin and synapsin. RESULTS: The ventral nerve cord of Remipedia displays a typical rope-ladder-like arrangement of separate metameric ganglia linked by paired longitudinally projecting connectives. The peripheral projections comprise an intersegmental nerve, consisting of two branches that fuse shortly after exiting the connectives, and the segmental anterior and posterior nerve. The distribution and morphology of serotonin-immunoreactive interneurons in the trunk segments is highly conserved within the remipede species we analyzed, which allows for the reconstruction of a ground pattern: two posterior and one anterior pair of serotonin-immunoreactive neurons that possess a single contralateral projection. Additionally, three pairs of immunoreactive neurons are found in the medial part of each hemiganglion. In one species (Cryptocorynetes haptodiscus), the anterior pair of immunoreactive neurons is missing. CONCLUSIONS: The anatomy of the remipede ventral nerve cord with its separate metameric ganglia mirrors the external morphology of the animal's trunk. The rope-ladder-like structure and principal architecture of the segmental ganglia in Remipedia corresponds closely to that of other Euarthropoda. A comparison of the serotonin-immunoreactive cell arrangement of Remipedia to reconstructed ground patterns of major euarthropod taxa supports a homology of the anterior and posterior neurons in Pancrustacea. These neurons in Remipedia possess unbranched projections across the midline, pointing towards similarities to the hexapod pattern. Our findings are in line with a growing number of phylogenetic investigations proposing Remipedia to be a rather derived crustacean lineage that perhaps has close affinities to Hexapoda.


Assuntos
Proteínas de Artrópodes/análise , Crustáceos/classificação , Neurônios/química , Serotonina/análise , Animais , Artrópodes/classificação , Crustáceos/anatomia & histologia , Crustáceos/química , Crustáceos/genética , Imunoquímica , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/química , Sistema Nervoso/citologia , Neurópilo/química , Filogenia , Serotonina/imunologia , Sinapsinas/química , Tubulina (Proteína)/química
11.
Mol Phylogenet Evol ; 69(2): 352-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23684911

RESUMO

About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was often criticized because of high substitution rates on nucleotides, large differences in amino acid substitution rate between taxa, and biases in nucleotide frequencies. Nevertheless, mitochondrial genome data might still be promising as it allows for a larger taxon sampling, while presenting a smaller amount of sequence information. We present the most comprehensive analysis of bilaterian relationships based on mitochondrial genome data. The analyzed data set comprises more than 650 mitochondrial genomes that have been chosen to represent a profound sample of the phylogenetic as well as sequence diversity. The results are based on high quality amino acid alignments obtained from a complete reannotation of the mitogenomic sequences from NCBI RefSeq database. However, the results failed to give support for many otherwise undisputed high-ranking taxa, like Mollusca, Hexapoda, Arthropoda, and suffer from extreme long branches of Nematoda, Platyhelminthes, and some other taxa. In order to identify the sources of misleading phylogenetic signals, we discuss several problems associated with mitochondrial genome data sets, e.g. the nucleotide and amino acid landscapes and a strong correlation of gene rearrangements with long branches.


Assuntos
Ordem dos Genes , Genoma Mitocondrial , Filogenia , Substituição de Aminoácidos , Aminoácidos/genética , Animais , Teorema de Bayes , Rearranjo Gênico , Funções Verossimilhança , Modelos Genéticos , Nucleotídeos/genética , Alinhamento de Sequência
12.
Toxicon X ; 14: 100117, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35309263

RESUMO

Modern venomics is increasing its focus on hymenopterans such as honeybees, bumblebees, parasitoid wasps, ants and true wasps. However solitary bees remain understudied in comparison and the few available venom studies focus on short melittin-like sequences and antimicrobial peptides. Herein we describe the first comprehensive venom profile of a solitary bee, the violet carpenter bee Xylocopa violacea, by using proteo-transcriptomics. We reveal a diverse and complex venom profile with 43 different protein families identified from dissected venom gland extracts of which 32 are also detected in the defensively injected venom. Melittin and apamin are the most highly secreted components, followed by Phospholipase A2, Icarapin, Secapin and three novel components. Other components, including eight novel protein families, are rather lowly expressed. We further identify multiple forms of apamin-like peptides. The melittin-like sequences of solitary bees separate into two clades, one comprised most sequences from solitary bees including xylopin (the variant in Xylocopa), while sequences from Lasioglossa appear closer related to melittin-like peptides from Bombus (Bombolittins). Our study suggests that more proteo-transcriptomic data from other solitary bees should be complemented with corresponding genome data to fully understand the evolution and complexity of bee venom proteins, and is of a particular need to disentangle the ambiguous phylogenetic relations of short peptides.

13.
Biol Rev Camb Philos Soc ; 97(1): 163-178, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34453398

RESUMO

Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.


Assuntos
Venenos de Aranha , Aranhas , Animais , Biologia , Venenos de Aranha/química , Aranhas/genética , Peçonhas
14.
Toxins (Basel) ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36548715

RESUMO

The venom of honeybees is composed of numerous peptides and proteins and has been used for decades as an anti-inflammatory and anti-cancer agent in traditional medicine. However, the bioactivity of specific biomolecular components has been evaluated for the predominant constituent, melittin. So far, only a few melittin-like peptides from solitary bee species have been investigated, and the molecular mechanisms of bee venoms as therapeutic agents remain largely unknown. Here, the preclinical pharmacological activities of known and proteo-transcriptomically discovered new melittin variants from the honeybee and more ancestral variants from phylogenetically older solitary bees were explored in the context of cancer and inflammation. We studied the effects of melittin peptides on cytotoxicity, second messenger release, and inflammatory markers using primary human cells, non-cancer, and cancerous cell lines. Melittin and some of its variants showed cytotoxic effects, induced Ca2+ signaling and inhibited cAMP production, and prevented LPS-induced NO synthesis but did not affect the IP3 signaling and pro-inflammatory activation of endothelial cells. Compared to the originally-described melittin, some phylogenetically more ancestral variants from solitary bees offer potential therapeutic modalities in modulating the in vitro inflammatory processes, and hindering cancer cell viability/proliferation, including aggressive breast cancers, and are worth further investigation.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Venenos de Abelha , Abelhas , Meliteno , Animais , Humanos , Venenos de Abelha/farmacologia , Venenos de Abelha/química , Células Endoteliais , Meliteno/química , Meliteno/isolamento & purificação , Meliteno/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
15.
Mol Biol Evol ; 27(11): 2451-64, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20534705

RESUMO

Arthropods were the first animals to conquer land and air. They encompass more than three quarters of all described living species. This extraordinary evolutionary success is based on an astoundingly wide array of highly adaptive body organizations. A lack of robustly resolved phylogenetic relationships, however, currently impedes the reliable reconstruction of the underlying evolutionary processes. Here, we show that phylogenomic data can substantially advance our understanding of arthropod evolution and resolve several conflicts among existing hypotheses. We assembled a data set of 233 taxa and 775 genes from which an optimally informative data set of 117 taxa and 129 genes was finally selected using new heuristics and compared with the unreduced data set. We included novel expressed sequence tag (EST) data for 11 species and all published phylogenomic data augmented by recently published EST data on taxonomically important arthropod taxa. This thorough sampling reduces the chance of obtaining spurious results due to stochastic effects of undersampling taxa and genes. Orthology prediction of genes, alignment masking tools, and selection of most informative genes due to a balanced taxa-gene ratio using new heuristics were established. Our optimized data set robustly resolves major arthropod relationships. We received strong support for a sister group relationship of onychophorans and euarthropods and strong support for a close association of tardigrades and cycloneuralia. Within pancrustaceans, our analyses yielded paraphyletic crustaceans and monophyletic hexapods and robustly resolved monophyletic endopterygote insects. However, our analyses also showed for few deep splits that were recently thought to be resolved, for example, the position of myriapods, a remarkable sensitivity to methods of analyses.


Assuntos
Artrópodes/classificação , Artrópodes/genética , Genômica/métodos , Filogenia , Animais , Teorema de Bayes , Etiquetas de Sequências Expressas , Funções Verossimilhança , Especificidade da Espécie
16.
Mol Phylogenet Evol ; 61(3): 880-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21945788

RESUMO

Molecular sequences do not only allow the reconstruction of phylogenetic relationships among species, but also provide information on the approximate divergence times. Whereas the fossil record dates the origin of most multicellular animal phyla during the Cambrian explosion less than 540 million years ago(mya), molecular clock calculations usually suggest much older dates. Here we used a large multiple sequence alignment derived from Expressed Sequence Tags and genomes comprising 129genes (37,476 amino acid positions) and 117 taxa, including 101 arthropods. We obtained consistent divergence time estimates applying relaxed Bayesian clock models with different priors and multiple calibration points. While the influence of substitution rates, missing data, and model priors were negligible, the clock model had significant effect. A log-normal autocorrelated model was selected on basis of cross-validation. We calculated that arthropods emerged ~600 mya. Onychophorans (velvet worms) and euarthropods split ~590 mya, Pancrustacea and Myriochelata ~560 mya, Myriapoda and Chelicerata ~555 mya, and 'Crustacea' and Hexapoda ~510 mya. Endopterygote insects appeared ~390 mya. These dates are considerably younger than most previous molecular clock estimates and in better agreement with the fossil record. Nevertheless, a Precambrian origin of arthropods and other metazoan phyla is still supported. Our results also demonstrate the applicability of large datasets of random nuclear sequences for approximating the timing of multicellular animal evolution.


Assuntos
Artrópodes/genética , Filogenia , Transcriptoma/genética , Animais , Teorema de Bayes , Calibragem , Evolução Molecular , Variação Genética , Modelos Genéticos , Fatores de Tempo
17.
Toxins (Basel) ; 13(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918654

RESUMO

Spiders are one of the most successful groups of venomous animals, but surprisingly few species have been examined in sufficient detail to determine the structure of their venom systems. To learn more about the venom system of the family Araneidae (orb-weavers), we selected the wasp spider (Argiope bruennichi) and examined the general structure and morphology of the venom apparatus by light microscopy. This revealed morphological features broadly similar to those reported in the small number of other spiders subject to similar investigations. However, detailed evaluation of the venom duct revealed the presence of four structurally distinct compartments. We propose that these subunits facilitate the expression and secretion of venom components, as previously reported for similar substructures in pit vipers and cone snails.


Assuntos
Estruturas Animais/anatomia & histologia , Venenos de Aranha/metabolismo , Aranhas/anatomia & histologia , Estruturas Animais/metabolismo , Animais , Via Secretória , Picada de Aranha , Aranhas/metabolismo
18.
Toxins (Basel) ; 13(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34437446

RESUMO

Arthropod venoms offer a promising resource for the discovery of novel bioactive peptides and proteins, but the limited size of most species translates into minuscule venom yields. Bioactivity studies based on traditional fractionation are therefore challenging, so alternative strategies are needed. Cell-free synthesis based on synthetic gene fragments is one of the most promising emerging technologies, theoretically allowing the rapid, laboratory-scale production of specific venom components, but this approach has yet to be applied in venom biodiscovery. Here, we tested the ability of three commercially available cell-free protein expression systems to produce venom components from small arthropods, using U2-sicaritoxin-Sdo1a from the six-eyed sand spider Hexophtalma dolichocephala as a case study. We found that only one of the systems was able to produce an active product in low amounts, as demonstrated by SDS-PAGE, mass spectrometry, and bioactivity screening on murine neuroblasts. We discuss our findings in relation to the promises and limitations of cell-free synthesis for venom biodiscovery programs in smaller invertebrates.


Assuntos
Biotecnologia/métodos , Sistema Livre de Células/fisiologia , Biossíntese de Proteínas/fisiologia , Venenos de Aranha/química , Biologia Sintética/métodos
19.
Mol Biol Evol ; 26(12): 2711-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19692666

RESUMO

The Remipedia are enigmatic crustaceans from anchialine cave systems, first described only 30 years ago, whose phylogenetic affinities are as yet unresolved. Here we report the sequence of hemocyanin from Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae). This is the first proof of the presence of this type of respiratory protein in a crustacean taxon other than Malacostraca. Speleonectes tulumensis hemocyanin consists of multiple distinct (at least three) subunits (StuHc1-3; Hc, hemocyanin). Surprisingly, the sequences are most similar to hexapod hemocyanins. Phylogenetic analyses showed that the S. tulumensis hemocyanin subunits StuHc1 and StuHc3 associate with the type 1 hexapod hemocyanin subunits, whereas StuHc2 associates with the type 2 subunits of hexapods. Together, remipede and hexapod hemocyanins are in the sister-group position to the hemocyanins of malacostracan crustaceans. Hemocyanins provide no indication of a close relationship of Myriapoda and Hexapoda but support Pancrustacea (Crustacea + Hexapoda). Our results also suggest that Crustacea are paraphyletic and that Hexapoda may have evolved from a Remipedia-like ancestor. Thus, Remipedia occupy a key position for the understanding of the evolution of hexapods, which are and have been one of the world's most speciose lineage of animals.


Assuntos
Crustáceos/classificação , Crustáceos/genética , Hemocianinas/química , Filogenia , Sequência de Aminoácidos , Animais , Teorema de Bayes , Hemocianinas/genética , Proteínas de Insetos/genética , Dados de Sequência Molecular , Consumo de Oxigênio/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética
20.
Front Zool ; 7: 10, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20356385

RESUMO

BACKGROUND: Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. RESULTS: ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. CONCLUSIONS: Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa