Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(4): 103037, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806683

RESUMO

The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded ß-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Ciclo Celular , Lipídeos , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espectroscopia de Ressonância Magnética , Bactérias/citologia , Divisão Celular
2.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019770

RESUMO

Ly-6/uPAR or three-finger proteins (TFPs) contain a disulfide-stabilized ß-structural core and three protruding loops (fingers). In mammals, TFPs have been found in epithelium and the nervous, endocrine, reproductive, and immune systems. Here, using heteronuclear NMR, we determined the three-dimensional (3D) structure and backbone dynamics of the epithelial secreted protein SLURP-1 and soluble domains of GPI-anchored TFPs from the brain (Lynx2, Lypd6, Lypd6b) acting on nicotinic acetylcholine receptors (nAChRs). Results were compared with the data about human TFPs Lynx1 and SLURP-2 and snake α-neurotoxins WTX and NTII. Two different topologies of the ß-structure were revealed: one large antiparallel ß-sheet in Lypd6 and Lypd6b, and two ß-sheets in other proteins. α-Helical segments were found in the loops I/III of Lynx2, Lypd6, and Lypd6b. Differences in the surface distribution of charged and hydrophobic groups indicated significant differences in a mode of TFPs/nAChR interactions. TFPs showed significant conformational plasticity: the loops were highly mobile at picosecond-nanosecond timescale, while the ß-structural regions demonstrated microsecond-millisecond motions. SLURP-1 had the largest plasticity and characterized by the unordered loops II/III and cis-trans isomerization of the Tyr39-Pro40 bond. In conclusion, plasticity could be an important feature of TFPs adapting their structures for optimal interaction with the different conformational states of nAChRs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Antígenos Ly/química , Proteínas Ligadas por GPI/química , Neuropeptídeos/química , Receptores Nicotínicos/química , Ativador de Plasminogênio Tipo Uroquinase/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Antígenos Ly/genética , Antígenos Ly/metabolismo , Sítios de Ligação , Clonagem Molecular , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
3.
J Struct Biol ; 206(1): 119-127, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825649

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus which can be involved in several central nervous system disorders such as encephalitis and meningitis. The VEEV genome codes for 4 non-structural proteins (nsP), of which nsP3 contains a Macro domain. Macro domains (MD) can be found as stand-alone proteins or embedded within larger proteins in viruses, bacteria and eukaryotes. Their most common feature is the binding of ADP-ribose (ADPr), while several macro domains act as ribosylation writers, erasers or readers. Alphavirus MD erase ribosylation but their precise contribution in viral replication is still under investigation. NMR-driven titration experiments of ADPr in solution with the VEEV macro domain (in apo- and complex state) show that it adopts a suitable conformation for ADPr binding. Specific experiments indicate that the flexibility of the loops ß5-α3 and α3-ß6 is critical for formation of the complex and assists a wrapping mechanism for ADPr binding. Furthermore, along with this sequence of events, the VEEV MD undergoes a conformational exchange process between the apo state and a low-populated "dark" conformational state.


Assuntos
Adenosina Difosfato Ribose/química , Vírus da Encefalite Equina Venezuelana/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteínas não Estruturais Virais/química , Adenosina Difosfato Ribose/metabolismo , Animais , Vírus da Encefalite Equina Venezuelana/genética , Cavalos , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
4.
J Biomol NMR ; 70(4): 219-228, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29594733

RESUMO

Simple and convenient method of protein dynamics evaluation from the insufficient experimental 15N relaxation data is presented basing on the ratios, products, and differences of longitudinal and transverse 15N relaxation rates obtained at a single magnetic field. Firstly, the proposed approach allows evaluating overall tumbling correlation time (nanosecond time scale). Next, local parameters of the model-free approach characterizing local mobility of backbone amide N-H vectors on two different time scales, S2 and R ex , can be elucidated. The generalized order parameter, S2, describes motions on the time scale faster than the overall tumbling correlation time (pico- to nanoseconds), while the chemical exchange term, R ex , identifies processes slower than the overall tumbling correlation time (micro- to milliseconds). Advantages and disadvantages of different methods of data handling are thoroughly discussed.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Movimento (Física) , Isótopos de Nitrogênio , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 112(38): 11852-7, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26372966

RESUMO

The structure of the dynorphin (1-13) peptide (dynorphin) bound to the human kappa opioid receptor (KOR) has been determined by liquid-state NMR spectroscopy. (1)H and (15)N chemical shift variations indicated that free and bound peptide is in fast exchange in solutions containing 1 mM dynorphin and 0.01 mM KOR. Radioligand binding indicated an intermediate-affinity interaction, with a Kd of ∼200 nM. Transferred nuclear Overhauser enhancement spectroscopy was used to determine the structure of bound dynorphin. The N-terminal opioid signature, YGGF, was observed to be flexibly disordered, the central part of the peptide from L5 to R9 to form a helical turn, and the C-terminal segment from P10 to K13 to be flexibly disordered in this intermediate-affinity bound state. Combining molecular modeling with NMR provided an initial framework for understanding multistep activation of a G protein-coupled receptor by its cognate peptide ligand.


Assuntos
Dinorfinas/química , Dinorfinas/metabolismo , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Sequência de Aminoácidos , Dinorfinas/isolamento & purificação , Humanos , Ligantes , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Isótopos de Nitrogênio , Fragmentos de Peptídeos/isolamento & purificação , Peptídeos , Piperidinas/química , Ligação Proteica , Estrutura Secundária de Proteína , Receptores Opioides kappa/química , Tetra-Hidroisoquinolinas/química , Fatores de Tempo
6.
Molecules ; 23(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384436

RESUMO

Interleukin-8 (CXCL8), a potent neutrophil-activating chemokine, exerts its function by activating the CXCR1 receptor that belongs to class A G protein-coupled receptors (GPCRs). Receptor activation involves interactions between the CXCL8 N-terminal loop and CXCR1 N-terminal domain (N-domain) residues (Site-I) and between the CXCL8 N-terminal and CXCR1 extracellular/transmembrane residues (Site-II). CXCL8 exists in equilibrium between monomers and dimers, and it is known that the monomer binds CXCR1 with much higher affinity and that Site-I interactions are largely responsible for the differences in monomer vs. dimer affinity. Here, using backbone 15N-relaxation nuclear magnetic resonance (NMR) data, we characterized the dynamic properties of the CXCL8 monomer and the CXCR1 N-domain in the free and bound states. The main chain of CXCL8 appears largely rigid on the picosecond time scale as evident from high order parameters (S²). However, on average, S² are higher in the bound state. Interestingly, several residues show millisecond-microsecond (ms-µs) dynamics only in the bound state. The CXCR1 N-domain is unstructured in the free state but structured with significant dynamics in the bound state. Isothermal titration calorimetry (ITC) data indicate that both enthalpic and entropic factors contribute to affinity, suggesting that increased slow dynamics in the bound state contribute to affinity. In sum, our data indicate a critical and complex role for dynamics in driving CXCL8 monomer-CXCR1 Site-I interactions.


Assuntos
Interleucina-8/química , Complexos Multiproteicos/química , Receptores de Interleucina-8A/química , Termodinâmica , Sequência de Aminoácidos/genética , Humanos , Interleucina-8/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos/genética , Mapeamento de Interação de Proteínas , Multimerização Proteica , Receptores de Interleucina-8A/genética
7.
Proc Natl Acad Sci U S A ; 111(9): 3425-30, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550514

RESUMO

The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. The actual fusion process involves a switch from a homotrimeric prehairpin intermediate conformation, consisting of parallel coiled-coil helices, to a postfusion state where the ectodomains are arranged as a trimer of helical hairpins, adopting a six-helix bundle (6HB) state. Here, we show by solution NMR spectroscopy that a water-soluble 6HB gp41 ectodomain binds to zwitterionic detergents that contain phosphocholine or phosphatidylcholine head groups and phospholipid vesicles that mimic T-cell membrane composition. Binding results in the dissociation of the 6HB and the formation of a monomeric state, where its two α-helices, N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), become embedded in the lipid-water interface of the virus and host cell. The atomic structure of the gp41 ectodomain monomer, based on NOE distance restraints and residual dipolar couplings, shows that the NHR and CHR helices remain mostly intact, but they completely lose interhelical contacts. The high affinity of the ectodomain helices for phospholipid surfaces suggests that unzippering of the prehairpin intermediate leads to a state where the NHR and CHR helices become embedded in the host cell and viral membranes, respectively, thereby providing a physical force for bringing these membranes into close juxtaposition before actual fusion.


Assuntos
Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Modelos Biológicos , Conformação Proteica , Internalização do Vírus , Sequência de Aminoácidos , Cromatografia em Gel , Componentes do Gene , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Água/química
8.
Chembiochem ; 14(14): 1754-61, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23813793

RESUMO

The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated α-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close to random coil values, as expected for an intrinsically disordered protein, substantial deviations in the pressure dependence of the chemical shifts are seen relative to those in short model peptides. In particular, the nonlinear pressure response of the (1) H(N) chemical shifts, which commonly is associated with the presence of low-lying "excited states", is much larger in α-synuclein than in model peptides. The linear pressure response of (1) H(N) chemical shift, commonly linked to H-bond length change, correlates well with those in short model peptides, and is found to be anticorrelated with its temperature dependence. The pressure dependence of (13) C chemical shifts shows remarkably large variations, even when accounting for residue type, and do not point to a clear shift in population between different regions of the Ramachandran map. However, a nearly universal decrease in (3) JHN-Hα by 0.22 ± 0.05 Hz suggests a slight increase in population of the polyproline II region at 2500 bar. The first six residues of N-terminally acetylated synuclein show a transient of approximately 15% population of α-helix, which slightly diminishes at 2500 bar. The backbone dynamics of the protein is not visibly affected beyond the effect of slight increase in water viscosity at 2500 bar.


Assuntos
Ressonância Magnética Nuclear Biomolecular , alfa-Sinucleína/química , Isótopos de Carbono/química , Hidrogênio/química , Pressão Hidrostática , Isótopos de Nitrogênio/química , Estrutura Secundária de Proteína , Temperatura , alfa-Sinucleína/metabolismo
9.
Chembiochem ; 14(14): 1780-8, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23801644

RESUMO

(15) N NMR relaxation studies, analyses of NMR data to include chemical shifts, residual dipolar couplings (RDC), NOEs and H(N) -H(α) coupling constants, and molecular dynamics (MD) simulations have been used to characterise the behaviour of lysozyme from bacteriophage lambda (λ lysozyme) in solution. The lower and upper lip regions in λ lysozyme (residues 51-60 and 128-141, respectively) show reduced (1) H-(15) N order parameters indicating mobility on a picosecond timescale. In addition, residues in the lower and upper lips also show exchange contributions to T2 indicative of slower timescale motions. The chemical shift, RDC, coupling constant and NOE data for λ lysozyme indicate that two fluctuating ß-strands (ß3 and ß4) are populated in the lower lip region while the N terminus of helix α6 (residues 136-139) forms dynamic helical turns in the upper lip region. This behaviour is confirmed by MD simulations that show hydrogen bonds, indicative of the ß-sheet and helical secondary structure in the lip regions, with populations of 40-60 %. Thus in solution λ lysozyme adopts a conformational ensemble that will contain both the open and closed forms observed in the crystal structures of the protein.


Assuntos
Bacteriófago lambda/enzimologia , Simulação de Dinâmica Molecular , Muramidase/química , Ressonância Magnética Nuclear Biomolecular , Cristalografia por Raios X , Ligação de Hidrogênio , Muramidase/metabolismo , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Soluções/química , Especificidade por Substrato
10.
Magn Reson Chem ; 51(12): 795-807, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24136818

RESUMO

The amyloid pathology associated with long-term haemodialysis is due to the deposition of ß2-microglobulin, the non-polymorphic light chain of class I major histocompatibility complex, that accumulates at bone joints into amyloid fibrils. Several lines of evidence show the relevance of the tryptophan residue at position 60 for the fibrillogenic transition of the protein. A comparative (15)N NMR relaxation analysis is presented for wild-type human ß2-microglobulin and W60G ß2-microglobulin, i.e. the mutant with a glycyne replacing the natural tryptophan residue at position 60. The experimental data, collected at 11.4 T and 310 K, were analyzed by means of the reduced spectral density approach. Molecular dynamics (MD) simulations and corresponding thermodynamic integration, together with hydrodynamic calculations were performed to support data interpretation. The analysis results for the mutant protein are consistent with a reduced aggregation with respect to the wild-type counterpart, as a consequence of an increased conformational rigidity probed by either NMR relaxation and MD simulations. Although dynamics in solution is other than fibrillar competence, the assessed properties of the mutant protein can be related with its reduced ability of forming fibrils when seeded in 20% trifluoroethanol.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Microglobulina beta-2/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Isótopos de Nitrogênio , Oxirredução , Conformação Proteica , Termodinâmica , Microglobulina beta-2/genética
11.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572327

RESUMO

Several secreted proteins from helminths (parasitic worms) have been shown to have immunomodulatory activities. Asparaginyl-tRNA synthetases are abundantly secreted in the filarial nematode Brugia malayi (BmAsnRS) and the parasitic flatworm Schistosoma japonicum (SjAsnRS), indicating a possible immune function. The suggestion is supported by BmAsnRS alleviating disease symptoms in a T-cell transfer mouse model of colitis. This immunomodulatory function is potentially related to an N-terminal extension domain present in eukaryotic AsnRS proteins but few structure/function studies have been done on this domain. Here we have determined the three-dimensional solution structure of the N-terminal extension domain of SjAsnRS. A protein containing the 114 N-terminal amino acids of SjAsnRS was recombinantly expressed with isotopic labelling to allow structure determination using 3D NMR spectroscopy, and analysis of dynamics using NMR relaxation experiments. Structural comparisons of the N-terminal extension domain of SjAsnRS with filarial and human homologues highlight a high degree of variability in the ß-hairpin region of these eukaryotic N-AsnRS proteins, but similarities in the disorder of the C-terminal regions. Limitations in PrDOS-based intrinsically disordered region (IDR) model predictions were also evident in this comparison. Empirical structural data such as that presented in our study for N-SjAsnRS will enhance the prediction of sequence-homology based structure modelling and prediction of IDRs in the future.Communicated by Ramaswamy H. Sarma.

12.
Biomol NMR Assign ; 16(1): 75-79, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34985724

RESUMO

The Hsp100 family member ClpB is a protein disaggregase which solubilizes and reactivates stress-induced protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. In the pathogenic bacterium Francisella tularensis, ClpB is involved in type VI secretion system (T6SS) disassembly through depolymerization of the IglA-IglB sheath. This leads to recycling and reassembly of T6SS components and this process is essential for the virulence of the bacterium. Here we report the backbone chemical shift assignments and 15N relaxation-based backbone dynamics of the N-terminal substrate-binding domain of ClpB (1-156).


Assuntos
Proteínas de Escherichia coli , Francisella tularensis , Sistemas de Secreção Tipo VI , Proteínas de Escherichia coli/metabolismo , Francisella tularensis/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Ressonância Magnética Nuclear Biomolecular , Sistemas de Secreção Tipo VI/metabolismo , Virulência
13.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499349

RESUMO

For some time, glycopeptide antibiotics have been considered the last line of defense against Methicillin-resistant Staphylococcus aureus (MRSA). However, vancomycin resistance of Gram-positive bacteria is an increasingly emerging worldwide health problem. The mode of action of glycopeptide antibiotics is essentially the binding of peptidoglycan cell-wall fragments terminating in the d-Ala-d-Ala sequence to the carboxylate anion binding pocket of the antibiotic. Dimerization of these antibiotics in aqueous solution was shown to persist and even to enhance the antibacterial effect in a co-operative manner. Some works based on solid state (ss) Nuclear Magnetic Resonance (NMR) studies questioned the presence of dimers under the conditions of ssNMR while in a few cases, higher-order oligomers associated with contiguous back-to-back and face-to-face dimers were observed in the crystal phase. However, it is not proved if such oligomers persist in aqueous solutions. With the aid of 15N-labelled eremomycin using 15N relaxation and diffusion NMR methods, we observed tetramers and octamers when the N-Ac-d-Ala-d-Ala dipeptide was added. To the contrary, the N-Ac-d-Ala or (N-Ac)2-l-Lys-d-Ala-d-Ala tripeptide did not induce higher-order oligomers. These observations are interesting examples of tailored supramolecular self-organization. New antimicrobial tests have also been carried out with these self-assemblies against MRSA and VRE (resistant) strains.

14.
Membranes (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374166

RESUMO

Studies revolving around mechanisms responsible for the development of amyloid-based diseases lay the foundations for the recognition of molecular targets of future to-be-developed treatments. However, the vast number of peptides and proteins known to be responsible for fibril formation, combined with their complexity and complexity of their interactions with various cellular components, renders this task extremely difficult and time-consuming. One of these proteins, human cystatin C (hCC), is a well-known and studied cysteine-protease inhibitor. While being a monomer in physiological conditions, under the necessary stimulus-usually a mutation, it tends to form fibrils, which later participate in the disease development. This process can potentially be regulated (in several ways) by many cellular components and it is being hypothesized that the cell membrane might play a key role in the oligomerization pathway. Studies involving cell membranes pose several difficulties; therefore, an alternative in the form of membrane mimetics is a very attractive solution. Here, we would like to present the first study on hCC oligomerization under the influence of phospholipid liposomes, acting as a membrane mimetic. The protein-mimetic interactions are studied utilizing circular dichroism, nuclear magnetic resonance, and size exclusion chromatography.

15.
PeerJ ; 6: e5412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186676

RESUMO

The TonB protein plays an essential role in the energy transduction system to drive active transport across the outer membrane (OM) using the proton-motive force of the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain (CTD) of TonB protein is known to interact with the conserved TonB box motif of TonB-dependent OM transporters, which likely induces structural changes in the OM transporters. Several distinct conformations of differently dissected CTDs of Escherichia coli TonB have been previously reported. Here we determined the solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB (PaTonB-96). The structure shows a monomeric structure with the flexible C-terminal region (residues 338-342), different from the NMR structure of E. coli TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by 15N relaxation analysis and molecular dynamics simulation. We created models for the PaTonB-96/TonB box interaction and propose that the internal fluctuations of PaTonB-96 makes it more accessible for the interactions with the TonB box and possibly plays a role in disrupting the plug domain of the TonB-dependent OM transporters.

16.
J Magn Reson ; 241: 155-69, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24120537

RESUMO

(15)N R2 relaxation is one of the most informative experiments for characterization of intrinsically disordered proteins (IDPs). Small changes in nitrogen R2 rates are often used to determine how IDPs respond to various biologically relevant perturbations such as point mutations, posttranslational modifications and weak ligand interactions. However collecting high-quality (15)N relaxation data can be difficult. Of necessity, the samples of IDPs are often prepared with low protein concentration and the measurement time can be limited because of rapid sample degradation. Furthermore, due to hardware limitations standard experiments such as (15)N spin-lock and CPMG can sample the relaxation decay only to ca. 150ms. This is much shorter than (15)N T2 times in disordered proteins at or near physiological temperature. As a result, the sampling of relaxation decay profiles in these experiments is suboptimal, which further lowers the precision of the measurements. Here we report a new implementation of the proton-decoupled (PD) CPMG experiment which allows one to sample (15)N R2 relaxation decay up to ca. 0.5-1s. The new experiment has been validated through comparison with the well-established spin-lock measurement. Using dilute samples of denatured ubiquitin, we have demonstrated that PD-CPMG produces up to 3-fold improvement in the precision of the data. It is expected that for intrinsically disordered proteins the gains may be even more substantial. We have also shown that this sequence has a number of favorable properties: (i) the spectra are recorded with narrow linewidth in nitrogen dimension; (ii) (15)N offset correction is small and easy to calculate; (iii) the experiment is immune to various spurious effects arising from solvent exchange; (iv) the results are stable with respect to pulse miscalibration and rf field inhomogeneity; (v) with minimal change, the pulse sequence can also be used to measure R2 relaxation of (15)N(ε) spins in arginine side chains. We anticipate that the new experiment will be a valuable addition to the NMR toolbox for studies of IDPs.


Assuntos
Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Algoritmos , Animais , Arginina/química , Calibragem , Galinhas , Simulação por Computador , Humanos , Marcação por Isótopo , Conformação Proteica , Prótons , Espectrina/química , Termodinâmica , Ubiquitina/química
17.
Protein Sci ; 23(4): 488-507, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452989

RESUMO

Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for (15) N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields.


Assuntos
Simulação de Dinâmica Molecular , Ubiquitina/química , Cristalização , Espectroscopia de Ressonância Magnética , Conformação Proteica
18.
Artigo em Inglês | MEDLINE | ID: mdl-24018322

RESUMO

Hydrogen bonds and ion pairs involving side chains play vital roles in protein functions such as molecular recognition and catalysis. Despite the wealth of structural information about hydrogen bonds and ion pairs at functionally crucial sites on proteins, the dynamics of these fundamental chemical interactions are not well understood largely due to the lack of suitable experimental tools in the past. NMR spectroscopy is a powerful tool for investigations of protein dynamics, but the vast majority of NMR methods had been applicable only to the backbone or methyl groups. Recently, a substantial progress has been made in the research on the dynamics of hydrogen bonds and ion pairs involving lysine side-chain NH3+ groups. Together with computational/theoretical approaches, the new NMR methods provide unique insights into the dynamics of hydrogen bonds and ion pairs involving lysine side chains. Here, the methodology and its applications are reviewed.


Assuntos
Lisina , Ressonância Magnética Nuclear Biomolecular , Hidrogênio , Ligação de Hidrogênio , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa