Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Immunity ; 56(7): 1515-1532.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437538

RESUMO

The nervous system is critical for intestinal homeostasis and function, but questions remain regarding its impact on gut immune defense. By screening the major neurotransmitters of C. elegans, we found that γ-aminobutyric acid (GABA) deficiency enhanced susceptibility to pathogenic Pseudomonas aeruginosa PA14 infection. GABAergic signaling between enteric neurons and intestinal smooth muscle promoted gut defense in a PMK-1/p38-dependent, but IIS/DAF-16- and DBL-1/TGF-ß-independent, pathway. Transcriptomic profiling revealed that the neuropeptide, FLP-6, acted downstream of enteric GABAergic signaling. Further data determined that FLP-6 was expressed and secreted by intestinal smooth muscle cells and functioned as a paracrine molecule on the intestinal epithelium. FLP-6 suppressed the transcription factors ZIP-10 and KLF-1 that worked in parallel and converged to the PMK-1/p38 pathway in the intestinal epithelia for innate immunity and gut defense. Collectively, these findings uncover an enteric neuron-muscle-epithelium axis that may be evolutionarily conserved in higher organisms.


Assuntos
Caenorhabditis elegans , Neurônios , Animais , Músculo Liso , Transdução de Sinais , Imunidade Inata
2.
EMBO J ; 41(15): e110735, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796008

RESUMO

γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and its levels in the synaptic space are controlled by the GABA transporter isoforms (GATs). GATs are structurally related to biogenic amine transporters but display interactions with distinct inhibitors used as anti-epileptics. In this study, we engineer the binding pocket of Drosophila melanogaster dopamine transporter to resemble GAT1 and determine high-resolution X-ray structures of the modified transporter in the substrate-free state and in complex with GAT1 inhibitors NO711 and SKF89976a that are analogs of tiagabine, a medication prescribed for the treatment of partial seizures. We observe that the primary binding site undergoes substantial shifts in subsite architecture in the modified transporter to accommodate the two GAT1 inhibitors. We also observe that SKF89976a additionally interacts at an allosteric site in the extracellular vestibule, yielding an occluded conformation. Interchanging SKF89976a interacting residue in the extracellular loop 4 between GAT1 and dDAT suggests a role for this motif in the selective control of neurotransmitter uptake. Our findings, therefore, provide vital insights into the organizational principles dictating GAT1 activity and inhibition.


Assuntos
Drosophila melanogaster , Ácido gama-Aminobutírico , Animais , Transporte Biológico , Drosophila melanogaster/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/química , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Neurotransmissores , Ácido gama-Aminobutírico/metabolismo
3.
Plant Physiol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186533

RESUMO

Saline-alkali stress is a widely distributed abiotic stress that severely limits plant growth. γ-Aminobutyric acid (GABA) accumulates rapidly in plants under saline-alkali stress, but the underlying molecular mechanisms and associated regulatory networks remain unclear. Here, we report a MYB-like protein, I-box binding factor (SlMYBI), which positively regulates saline-alkali tolerance through induced GABA accumulation by directly modulating the glutamic acid decarboxylase (GAD) gene SlGAD1 in tomato (Solanum lycopersicum L.). Overexpression of SlGAD1 increased GABA levels and decreased reactive oxygen species (ROS) accumulation under saline-alkali stress, while silencing of SlGAD1 further suggested that SlGAD1 plays an active role in GABA synthesis and saline-alkali tolerance of tomato. In addition, we found that SlMYBI activates SlGAD1 transcription. Both overexpression of SlMYBI and editing of SlMYBI using CRISPR/Cas9 showed that SlMYBI regulates GABA synthesis by modulating SlGAD1 expression. Furthermore, the interaction of SlNF-YC1 with SlMYBI enhanced the transcriptional activity of SlMYBI on SlGAD1 to further improve saline-alkali tolerance in tomato. Interestingly, we found that ethylene signaling was involved in the GABA response to saline-alkali stress by RNA-seq analysis of SlGAD1-overexpressing lines. This study elucidates the involvement of SlMYBI in GABA synthesis regulation. Specifically, the SlMYBI-SlNF-YC1 module is involved in GABA accumulation in response to saline-alkali stress.

4.
J Neurophysiol ; 132(2): 501-513, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958282

RESUMO

Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive nonimage-forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although µ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine [via the D1-type dopamine receptor (D1R)]) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both nonimage-forming and image-forming visual functions.NEW & NOTEWORTHY Neuromodulators such as dopamine are important regulators of retinal function. Here, we demonstrate that dopamine increases inhibitory inputs to intrinsically photosensitive retinal ganglion cells (ipRGCs), in addition to its previously established effect on intrinsic light responsiveness. This indicates that dopamine, in addition to its ability to intrinsically modulate ipRGC activity, can also affect synaptic inputs to ipRGCs, thereby tuning retina circuits involved in nonimage-forming visual functions.


Assuntos
Dopamina , Receptores de GABA-A , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Receptores de GABA-A/metabolismo , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Receptores Opioides mu/metabolismo , Masculino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Feminino , Agonistas de Dopamina/farmacologia
5.
Biochem Biophys Res Commun ; 692: 149351, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056157

RESUMO

Dihydropyrimidinase (DHPase) plays a crucial role in pyrimidine degradation, showcasing a broad substrate specificity that extends beyond pyrimidine catabolism, hinting at additional roles for this ancient enzyme. In this study, we solved the crystal structure of Pseudomonas aeruginosa DHPase (PaDHPase) complexed with the neurotransmitter γ-aminobutyric acid (GABA) at a resolution of 1.97 Å (PDB ID 8WQ9). Our structural analysis revealed two GABA binding sites in each monomer of PaDHPase. Interactions between PaDHPase and GABA molecules, involving residues within a contact distance of <4 Å, were examined. In silico analyses via PISA and PLIP software revealed hydrogen bonds formed between the side chain of Cys318 and GABA 1, as well as the main chains of Ser333, Ile335, and Asn337 with GABA 2. Comparative structural analysis between GABA-bound and unbound states unveiled significant conformational changes at the active site, particularly within dynamic loop I, supporting the conclusion that PaDHPase binds GABA through the loop-out mechanism. Building upon this molecular evidence, we discuss and propose a working model. The study expands the GABA interactome by identifying DHPase as a novel GABA-interacting protein and provides structural insight into the interaction between a dimetal center in the protein's active site and GABA. Further investigations are warranted to explore potential interactions of GABA with other DHPase-like proteins and to understand whether DHPase may have additional regulatory and physiological roles in the cell, extending beyond pyrimidine catabolism.


Assuntos
Amidoidrolases , Ácido gama-Aminobutírico , Amidoidrolases/química , Ácido gama-Aminobutírico/metabolismo , Proteínas , Neurotransmissores , Pirimidinas
6.
BMC Plant Biol ; 24(1): 65, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263036

RESUMO

BACKGROUND: Drought and salinity stress have been proposed as the main environmental factors threatening food security, as they adversely affect crops' agricultural productivity. As a potential solution, the application of plant growth regulators to enhance drought and salinity tolerance has gained considerable attention. γ-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that accumulates in plants as a response to stressful conditions. This study focused on a comparative assessment of several machine learning (ML) regression models, including radial basis function, generalized regression neural network (GRNN), random forest (RF), and support vector regression (SVR) to develop predictive models for assessing the effect of different concentrations of GABA (0, 10, 20, and 40 mM) on various physio-biochemical traits during periods of drought, salinity, and combined stress conditions. The physio-biochemical traits included antioxidant enzyme activities (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; and ascorbate peroxidase, APX), protein content, malondialdehyde (MDA) levels, and hydrogen peroxide (H2O2) levels. The non­dominated sorting genetic algorithm­II (NSGA­II) was employed for optimizing the superior prediction model. RESULTS: The GRNN model outperformed the other ML algorithms and was therefore selected for optimization by NSGA-II. The GRNN-NSGA-II model revealed that treatment with GABA at concentrations of 20.90 mM and 20.54 mM, under combined drought and salinity stress conditions at 20.86 and 20.72 days post-treatment, respectively, could result in the maximum values for protein content (by 0.80 and 0.69), APX activity (by 50.63 and 51.51), SOD activity (by 0.54 and 0.53), POD activity (by 1.53 and 1.72), CAT activity (by 4.42 and 5.66), as well as lower MDA levels (by 0.12 and 0.15) and H2O2 levels (by 0.44 and 0.55), respectively, in the 'Atabaki' and 'Rabab' cultivars. CONCLUSIONS: This study demonstrates that the GRNN-NSGA-II model, as an advanced ML algorithm with a strong predictive ability for outcomes in combined stressful environmental conditions, provides valuable insights into the significant factors influencing such multifactorial processes.


Assuntos
Antioxidantes , Punica granatum , Espécies Reativas de Oxigênio , Secas , Peróxido de Hidrogênio , Estresse Salino , Superóxido Dismutase
7.
Appl Environ Microbiol ; : e0073424, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133003

RESUMO

Halomonas elongata OUT30018 is a moderately halophilic bacterium that synthesizes and accumulates ectoine as an osmolyte by activities of the enzymes encoded by the high salinity-inducible ectABC operon. Previously, we engineered a γ-aminobutyric acid (GABA)-producing H. elongata GOP-Gad (ΔectABC::mCherry-HopGadmut) from an ectoine-deficient mutant of this strain due to its ability to use high-salinity biomass waste as substrate. Here, to further increase GABA accumulation, we deleted gabT, which encodes GABA aminotransferase (GABA-AT) that catalyzes the first step of the GABA catabolic pathway, from the H. elongata GOP-Gad genome. The resulting strain H. elongata ZN3 (ΔectABC::mCherry-HopGadmut ΔgabT) accumulated 291 µmol/g cell dry weight (CDW) of GABA in the cells, which is a 1.5-fold increase from H. elongata GOP-Gad's 190 µmol/g CDW. This result has confirmed the role of GABA-AT in the GABA catabolic pathway. However, redundancy in endogenous GABA-AT activity was detected in a growth test, where a gabT-deletion mutant of H. elongata OUT30018 was cultured in a medium containing GABA as the sole carbon and nitrogen sources. Because L-2,4-diaminobutyric acid aminotransferase (DABA-AT), encoded by an ectB gene of the ectABC operon, shares sequence similarity with GABA-AT, a complementation analysis of the gabT and the ectB genes was performed in the H. elongata ZN3 genetic background to test the involvement of DABA-AT in the redundancy of GABA-AT activity. Our results indicate that the expression of DABA-AT can restore GABA-AT activity in H. elongata ZN3 and establish DABA-AT's aminotransferase activity toward GABA in vivo. IMPORTANCE: In this study, we were able to increase the yield of GABA by 1.5 times in the GABA-producing H. elongata ZN3 strain by deleting the gabT gene, which encodes GABA-AT, the initial enzyme of the GABA catabolic pathway. We also report the first in vivo evidence for GABA aminotransferase activity of an ectB-encoded DABA-AT, confirming a longstanding speculation based on the reported in vitro GABA-AT activity of DABA-AT. According to our findings, the DABA-AT enzyme can catalyze the initial step of GABA catabolism, in addition to its known function in ectoine biosynthesis. This creates a cycle that promotes adequate substrate flow between the two pathways, particularly during the early stages of high-salinity stress response when the expression of the ectB gene is upregulated.

8.
Appl Environ Microbiol ; 90(1): e0112123, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38088552

RESUMO

Gut bacteria hold the potential to produce a broad range of metabolites that can modulate human functions, including molecules with neuroactive potential. One such molecule is γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter of the central nervous system in animals. Metagenomic analyses suggest that the genomes of many gut bacteria encode glutamate decarboxylase (GAD), the enzyme that catalyzes GABA production. The genome of Akkermansia muciniphila, a mucin specialist and potential next-generation probiotic from the human gut, is predicted to encode GAD, suggesting a contributing role in GABA production in the human gut. In this study, A. muciniphila was grown in batch cultures with and without pH control. In both experiments, A. muciniphila was found to produce GABA as a response to acid (pH <5.5), although only when GABA precursors, either glutamate or glutamine, were present in the medium. Proteomic analysis comparing A. muciniphila grown with and without precursors at pH 4 did not show a difference in GAD expression, suggesting that it is expressed regardless of the presence of GABA precursors. To further investigate the function of A. muciniphila GAD, we heterologously expressed the gad gene (encoded by locus tag Amuc_0372) with a His tag in Escherichia coli and purified the GAD protein. Enzyme assays showed GAD activity in a pH range between 4 and 6, with the highest specific activity at pH 5 of 144 ± 16 µM GABA/min/mg. Overall, our results demonstrate the ability of A. muciniphila to produce GABA as an acid response and unravel the conditions under which GABA production in A. muciniphila occurs.IMPORTANCEAkkermansia muciniphila is considered to be a beneficial bacterium from the human gut, but the exact mechanisms by which A. muciniphila influences its host are not yet fully understood. To this end, it is important to identify which metabolites are produced and consumed by A. muciniphila that may contribute to a healthy gut. In the present study, we demonstrate the ability of A. muciniphila to produce γ-aminobutyric acid (GABA) when grown in an acidic environment, which often occurs in the gut. GABA is the major inhibitory neurotransmitter in the central nervous system and is present in the human gut. For this reason, it is considered an important bacterial metabolite. Our finding that A. muciniphila produces GABA in acidic environments adds to the growing body of understanding of its relationship with host health and provides an explanation on how it can survive acid stress in the human gut.


Assuntos
Proteômica , Verrucomicrobia , Animais , Humanos , Verrucomicrobia/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Akkermansia
9.
Appl Environ Microbiol ; 90(1): e0190523, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112419

RESUMO

A moderately halophilic eubacterium, Halomonas elongata, has been used as cell factory to produce fine chemical 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine), which functions as a major osmolyte protecting the cells from high-salinity stress. To explore the possibility of using H. elongata to biosynthesize other valuable osmolytes, an ectoine-deficient salt-sensitive H. elongata deletion mutant strain KA1 (ΔectABC), which only grows well in minimal medium containing up to 3% NaCl, was subjected to an adaptive mutagenesis screening in search of mutants with restored salt tolerance. Consequently, we obtained a mutant, which tolerates 6% NaCl in minimal medium by overproducing L-glutamic acid (Glu). However, this Glu-overproducing (GOP) strain has a lower tolerance level than the wild-type H. elongata, possibly because the acidity of Glu interferes with the pH homeostasis of the cell and hinders its own cellular accumulation. Enzymatic decarboxylation of Glu to γ-aminobutyric acid (GABA) by a Glu decarboxylase (GAD) could restore cellular pH homeostasis; therefore, we introduced an engineered salt-inducible HopgadBmut gene, which encodes a wide pH-range GAD mutant, into the genome of the H. elongata GOP strain. We found that the resulting H. elongata GOP-Gad strain exhibits higher salt tolerance than the GOP strain by accumulating high concentration of GABA as an osmolyte in the cell (176.94 µmol/g cell dry weight in minimal medium containing 7% NaCl). With H. elongata OUT30018 genetic background, H. elongata GOP-Gad strain can utilize biomass-derived carbon and nitrogen compounds as its sole carbon and nitrogen sources, making it a good candidate for the development of GABA-producing cell factories.IMPORTANCEWhile the wild-type moderately halophilic H. elongata can synthesize ectoine as a high-value osmolyte via the aspartic acid metabolic pathway, a mutant H. elongata GOP strain identified in this work opens doors for the biosynthesis of alternative valuable osmolytes via glutamic acid metabolic pathway. Further metabolic engineering to install a GAD system into the H. elongata GOP strain successfully created a H. elongata GOP-Gad strain, which acquired higher tolerance to salt stress by accumulating GABA as a major osmolyte. With the ability to assimilate biomass-derived carbon and nitrogen sources and thrive in high-salinity environment, the H. elongata GOP-Gad strain can be used in the development of sustainable GABA-producing cell factories.


Assuntos
Diamino Aminoácidos , Halomonas , Tolerância ao Sal , Ácido Glutâmico/metabolismo , Halomonas/genética , Engenharia Metabólica , Salinidade , Cloreto de Sódio/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Mov Disord ; 39(4): 733-738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357797

RESUMO

BACKGROUND: SAGE-324/BIIB124 is an investigational positive allosteric modulator of GABAA receptors. OBJECTIVE: KINETIC (NCT04305275), a double-blind, randomized, placebo-controlled, phase 2 study, evaluated SAGE-324/BIIB124 in individuals with essential tremor (ET). METHODS: Individuals aged 18 to 80 years were randomly assigned 1:1 to orally receive 60 mg of SAGE-324/BIIB124 or placebo once daily for 28 days. The primary endpoint was change from baseline in The Essential Tremor Rating Assessment Scale-Performance Subscale (TETRAS-PS) Item 4 (upper-limb tremor) at day 29 with SAGE-324/BIIB124 versus placebo. RESULTS: Between May 2020 and February 2021, 69 U.S. participants were randomly assigned to receive SAGE-324/BIIB124 (n = 34) or placebo (n = 35). There was a significant reduction from baseline in TETRAS-PS Item 4 at day 29 with SAGE-324/BIIB124 versus placebo (least squares mean [standard error]: -2.31 [0.401] vs. -1.24 [0.349], P = 0.0491). The most common treatment-emergent adverse events included somnolence, dizziness, fatigue, and balance disorder. CONCLUSION: These results support further development of SAGE-324/BIIB124 for potential ET treatment. © 2024 Sage Therapeutics, Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Método Duplo-Cego , Adulto , Idoso de 80 Anos ou mais , Adulto Jovem , Adolescente , Resultado do Tratamento
11.
J Magn Reson Imaging ; 59(3): 954-963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37312270

RESUMO

BACKGROUND: Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in human brains, playing a role in the pathogenesis of various psychiatric disorders. Current methods have some non-neglectable shortcomings and noninvasive and accurate detection of GABA in human brains is long-term challenge. PURPOSE: To develop a pulse sequence capable of selectively detecting and quantifying the 1 H signal of GABA in human brains based on optimal controlled spin singlet order. STUDY TYPE: Prospective. SUBJECTS/PHANTOM: A phantom of GABA (pH = 7.3 ± 0.1) and 11 healthy subjects (5 females and 6 males, body mass index: 21 ± 3 kg/m2 , age: 25 ± 4 years). FIELD STRENGTH/SEQUENCE: 7 Tesla, 3 Tesla, GABA-targeted magnetic resonance spectroscopy (GABA-MRS-7 T, GABA-MRS-3 T), magnetization prepared two rapid acquisition gradient echoes sequence. ASSESSMENT: By using the developed pulse sequences applied on the phantom and healthy subjects, the signals of GABA were successfully selectively probed. Quantification of the signals yields the concentration of GABA in the dorsal anterior cingulate cortex (dACC) in human brains. STATISTICAL TESTS: Frequency. RESULTS: The 1 H signals of GABA in the phantom and in the human brains of healthy subjects were successfully detected. The concentration of GABA in the dACC of human brains was 3.3 ± 1.5 mM. DATA CONCLUSION: The developed pulse sequences can be used to selectively probe the 1 H MR signals of GABA in human brains in vivo. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Estudos Prospectivos , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico
12.
J Pharmacol Sci ; 155(2): 63-73, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677787

RESUMO

Remimazolam is an ultra-short benzodiazepine that acts on the benzodiazepine site of γ-aminobutyric acid (GABA) receptors in the brain and induces sedation. Although GABA receptors are found localized in the spinal dorsal horn, no previous studies have reported the analgesic effects or investigated the cellular mechanisms of remimazolam on the spinal dorsal horn. Behavioral measures, immunohistochemistry, and in vitro whole-cell patch-clamp recordings of dorsal horn neurons were used to assess synaptic transmission. Intrathecal injection of remimazolam induced behavioral analgesia in inflammatory pain-induced mechanical allodynia (six rats/dose; p < 0.05). Immunohistochemical staining revealed that remimazolam suppressed spinal phosphorylated extracellular signal-regulated kinase activation (five rats/group, p < 0.05). In vitro whole-cell patch-clamp analysis demonstrated that remimazolam increased the frequency of GABAergic miniature inhibitory post-synaptic currents, prolonged the decay time (six rats; p < 0.05), and enhanced GABA currents induced by exogenous GABA (seven rats; p < 0.01). However, remimazolam did not affect miniature excitatory post-synaptic currents or amplitude of monosynaptic excitatory post-synaptic currents evoked by Aδ- and C-fiber stimulation (seven rats; p > 0.05). This study suggests that remimazolam induces analgesia by enhancing GABAergic inhibitory transmission in the spinal dorsal horn, suggesting its potential utility as a spinal analgesic for inflammatory pain.


Assuntos
Benzodiazepinas , Células do Corno Posterior , Ratos Sprague-Dawley , Transmissão Sináptica , Animais , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Masculino , Transmissão Sináptica/efeitos dos fármacos , Benzodiazepinas/farmacologia , Técnicas de Patch-Clamp , Analgésicos/farmacologia , Ácido gama-Aminobutírico/metabolismo , Ratos , Injeções Espinhais , Hiperalgesia/tratamento farmacológico , Receptores de GABA/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
13.
MAGMA ; 37(1): 39-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37715877

RESUMO

OBJECTIVE: To find a possible quantitative relation between activation-induced fast (< 10 s) changes in the γ-aminobutyric acid (GABA) level and the amplitude of a blood oxygen level-dependent contrast (BOLD) response (according to magnetic resonance spectroscopy [MRS] and functional magnetic resonance imaging [fMRI]). MATERIALS AND METHODS: fMRI data and MEGA-PRESS magnetic resonance spectra [echo time (TE)/repetition time (TR) = 68 ms/1500 ms] of an activated area in the visual cortex of 33 subjects were acquired using a 3 T MR scanner. Stimulation was performed by presenting an image of a flickering checkerboard for 3 s, repeated with an interval of 13.5 s. The time course of GABA and creatine (Cr) concentrations and the width and height of resonance lines were obtained with a nominal time resolution of 1.5 s. Changes in the linewidth and height of n-acetylaspartate (NAA) and Cr signals were used to determine the BOLD effect. RESULTS: In response to the activation, the BOLD-corrected GABA + /Cr ratio increased by 5.0% (q = 0.027) and 3.8% (q = 0.048) at 1.6 and 3.1 s, respectively, after the start of the stimulus. Time courses of Cr and NAA signal width and height reached a maximum change at the 6th second (~ 1.2-1.5%, q < 0.05). CONCLUSION: The quick response of the observed GABA concentration to the short stimulus is most likely due to a release of GABA from vesicles followed by its packaging back into vesicles.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estimulação Luminosa , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico , Creatina , Ácido Glutâmico
14.
Sleep Breath ; 28(3): 1415-1422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427222

RESUMO

BACKGROUND: Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common respiratory disease with potential lethality. At present, the commonly used treatment method is continuous positive airway pressure ventilation, but with the prolongation of the course of the disease, the effect of single ventilation on the improvement of oxidative stress levels is not good. Lipoic acid is a commonly used antioxidant in clinics. In this paper, lipoic acid combined with continuous positive airway pressure ventilation is used to explore whether it has a better therapeutic effect on patients. AIM: To probe into the clinical efficacy of lipoic acid combined with continuous positive airway pressure ventilation in the therapy of OSAHS. METHODS: 82 patients with OSAHS who were cured in our hospital from March 2021 to September 2022 were prospectively collected as subjects. Based on different treatment methods, patients were grouped into a control group (43 cases) and an observation group (39 cases). The control group was treated with continuous positive airway pressure (CPAP), and the observation group was treated with lipoic acid based on control group. The therapeutic effects were measured by apnea hypopnea index (AHI), oxygen saturation (SpO2), mean oxygen saturation (MSpO2), serum malondialdehyde (MDA), superoxide dismutase (SOD), hypoxia inducible factor-1α (HIF-1α) levels, peripheral blood γ-aminobutyric acid, melatonin levels. RESULTS: The clinical effectiveness of the observation group was better (P < 0.05). After treatment, AHI, the levels of MDA and HIF-1α in the observation group were lower and SpO2, MSpO2 and the level of SOD, γ- aminobutyric acid, and melatonin were higher than those in the control group (P < 0.05). The levels of γ- aminobutyric acid and melatonin were negatively correlated with the severity of symptoms, ESS, and AIS scores (P < 0.05). CONCLUSIONS: The clinical effect of lipoic acid combined with CPAP in the treatment of OSAHS is better, and it has a positive effect on the levels of γ-aminobutyric acid and melatonin in peripheral blood. Lipoic acid was added to the original method for treatment, and the therapeutic effect was greatly improved.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Melatonina , Apneia Obstrutiva do Sono , Ácido Tióctico , Ácido gama-Aminobutírico , Humanos , Ácido Tióctico/uso terapêutico , Melatonina/sangue , Melatonina/uso terapêutico , Apneia Obstrutiva do Sono/terapia , Apneia Obstrutiva do Sono/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Ácido gama-Aminobutírico/sangue , Terapia Combinada , Antioxidantes , Resultado do Tratamento , Estudos Prospectivos
15.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38977897

RESUMO

Sleeplessness (insomnia) is a potential symptom of depression. A probiotic NVP1704 alleviates depression-like behavior and neuroinflammation in mice. Therefore, to understand whether NVP1704 could be effective against sleeplessness in vivo, we exposed immobilization stress (IS) in mice, then orally administered NVP1704 for 5 days, and assayed depression/anxiety-like behavior in the open field, elevated plus maze, and tail suspension tests, sleeping latency time, and sleep duration, euthanized then by exposure to CO2, and analyzed their related biomarkers. Oral administration of NVP1704 decreased IS-induced depression/anxiety-like behavior and sleeping latency time and increased IS-suppressed sleeping duration. NVP1704 increased IS-suppressed expression of γ-aminobutyric acid (GABA), GABAA receptor α1 (GABAARα1) and α2 subunits (GABAARα2), serotonin, 5-HT receptors (5-HT1AR and 5-HT1BR), and melatonin receptors (MT1R and MT2R) in the prefrontal cortex and thalamus. NVP1704 also increased the IS-suppressed GABAARα1-positive cell population in the prefrontal cortex and decreased IS-induced corticosterone, TNF-α, and IL-6 expression and the NF-κB+Iba1+ cell population in the brain and myeloperoxidase, TNF-α, and IL-6 expression and the NF-κB+CD11c+ cell population in the colon. Based on these findings, NVP1704 may alleviate depression/anxiety/sleeplessness-like behaviors through the upregulation of serotonergic and GABAergic systems and downregulation of NF-κB activation.


Assuntos
Depressão , NF-kappa B , Probióticos , Animais , Camundongos , Probióticos/administração & dosagem , Probióticos/farmacologia , NF-kappa B/metabolismo , Depressão/etiologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Masculino , Serotonina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Estresse Psicológico/tratamento farmacológico , Regulação para Baixo , Regulação para Cima , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética
16.
Pestic Biochem Physiol ; 199: 105776, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458683

RESUMO

γ-Aminobutyric acid receptors (GABARs) are crucial targets for pest control chemicals, including meta-diamide and isoxazoline insecticides, which act as negative allosteric modulators of insect GABARs. Previous cell-based assays have indicated that amino acid residues in the transmembrane cavity between adjacent subunits of Drosophila RDL GABAR (i.e., Ile276, Leu280, and Gly335) are involved in mediating the action of meta-diamides. In this study, to confirm this result at the organismal level, we employed CRISPR/Cas9-mediated genome editing, generated six transgenic Drosophila strains carrying substitutions in these amino acid residues, and investigated their sensitivity to broflanilide and isocycloseram. Flies homozygous for the I276F mutation did not exhibit any change in sensitivity to the tested insecticides compared to the control flies. Conversely, I276C homozygosity was lethal, and heterozygous flies exhibited ∼2-fold lower sensitivity to broflanilide than the control flies. Flies homozygous for the L280C mutation survived into adulthood but exhibited infertility. Both heterozygous and homozygous L280C flies exhibited ∼3- and âˆ¼20-fold lower sensitivities to broflanilide and isocycloseram, respectively, than the control flies. The reduction in sensitivity to isocycloseram in L280C flies diminished to ∼3-fold when treated with piperonyl butoxide. Flies homozygous for the G335A mutation reached the adult stage. However, they were sterile, had small bodies, and exhibited reduced locomotion, indicating the critical role of Gly335 in RDL function. These flies exhibited markedly increased tolerance to topically applied broflanilide and isocycloseram, demonstrating that the conserved Gly335 is the target of the insecticidal actions of broflanilide and isocycloseram. Considering the significant fitness costs, the Gly335 mutation may not pose a serious risk for the development of resistance in field populations of insect pests. However, more careful studies using insect pests are needed to investigate whether our perspective applies to resistance development under field conditions.


Assuntos
Benzamidas , Proteínas de Drosophila , Fluorocarbonos , Inseticidas , Animais , Receptores de GABA/genética , Receptores de GABA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Glicina/farmacologia , Mutagênese , Resistência a Inseticidas/genética , Receptores de GABA-A/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
17.
Bioprocess Biosyst Eng ; 47(6): 957-969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38717593

RESUMO

γ-Aminobutyric acid (GABA) is a crucial neurotransmitter with wide application prospects. In this study, we focused on a GABA-producing strain from a traditional Chinese fermented beverage system. Among the six isolates, Lactobacillus hilgardii GZ2 exhibited the greatest ability to produce GABA in the traditional Chinese fermented beverage system. To increase GABA production, we optimized carbon sources, nitrogen sources, temperature, pH, and monosodium glutamate and glucose concentrations and conducted fed-batch fermentation. The best carbon and nitrogen sources for GABA production and cell growth were glucose, yeast extract and tryptone. Gradual increases in GABA were observed as the glucose and monosodium glutamate concentrations increased from 10 g/L to 50 g/L. During fed-batch fermentation, lactic acid was used to maintain the pH at 5.56, and after feeding with 0.03 g/mL glucose and 0.4 g/mL sodium glutamate for 72 h, the GABA yield reached 239 g/L. This novel high-GABA-producing strain holds great potential for the industrial production of GABA, as well as the development of health-promoting functional foods and medical fields.


Assuntos
Lactobacillus , Ácido gama-Aminobutírico , Bebidas , Fermentação , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillus/metabolismo , Lactobacillus/crescimento & desenvolvimento , Glutamato de Sódio/metabolismo
18.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256065

RESUMO

Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.


Assuntos
Arabidopsis , Camellia sinensis , Resistência à Seca , Arabidopsis/genética , Camellia sinensis/genética , Putrescina , Plantas Geneticamente Modificadas/genética , Ácido gama-Aminobutírico , Chá
19.
Prep Biochem Biotechnol ; 54(4): 514-525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37694843

RESUMO

Lactic acid bacteria (LAB) can produce γ-aminobutyric acid (GABA) with antioxidant properties and sedative effects when it binds to the GABA receptor in the human brain. LAB can also produce bacteriocin-like inhibitory substances (BLIS) with antimicrobial capabilities during carbohydrate fermentation. GABA and BLIS are natural compounds with potential health benefits and food preservation properties. Lactobacillus brevis C23 was co-cultured with three different LABs as inducers, which produced the highest GABA content and BLIS activity. They were cultured in various plant-based media to obtain an edible and better-tasting final product over commercially available media like MRS broth. A coconut-based medium with additives was optimized using response surface methodology (RSM) to increase GABA and BLIS production. The optimized medium for maximum GABA production (3.22 ± 0.01 mg/mL) and BLIS activity (84.40 ± 0.44%) was a 5.5% coconut medium containing 0.23% glucose, 1.44% Tween 20, 0.48% L-glutamic acid, and 0.02% pyridoxine. Due to the presence of GABA, the cell-free supernatant (CFS) as a postbiotic showed higher antioxidant activity than other food preservatives like nisin and potassium sorbate. Finally, microbiological tests on food samples showed that the postbiotic was more effective than other preservatives at combating the growth of LAB, molds and coliform bacteria, making it a possible food preservative.


Assuntos
Bacteriocinas , Levilactobacillus brevis , Humanos , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Técnicas de Cocultura , Conservação de Alimentos , Conservantes de Alimentos , Ácido gama-Aminobutírico
20.
J Sci Food Agric ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979987

RESUMO

BACKGROUND: This study investigated the effects of γ-aminobutyric acid (GABA) combined with ultrasonic stress germination (AUG) treatment on the phenolic content and antioxidant activity of highland barley (HB). Key variables, including germination times (ranging from 0 to 96 h), ultrasonic power (200-500 W), and GABA concentration (5-20 mmol/L), were optimized using response surface methodology (RSM) to enhance the enrichment of phenolic compounds. Furthermore, the study assessed the content, composition, and antioxidant activities of phenolic compounds in HB under various treatment conditions such as germination alone (G), ultrasonic stress germination (UG), and AUG treatment. RESULTS: The study identified optimal conditions for the phenolic enrichment of HB, which included a germination time of 60 h, an ultrasound power of 300 W, and a GABA concentration of 15 mmol L-1. Under these conditions, the total phenolic content (TPC) in HB was measured at 7.73 milligrams of gallic acid equivalents per gram dry weight (mg GAE/g DW), representing a 34.96% enhancement compared to untreated HB. Notably, all treatment modalities - G, UG, and AUG - significantly increased the phenolic content and antioxidant activity in HB, with the AUG treatment proving to be the most effective. CONCLUSION: These obtained results suggest that AUG treatment is a promising processing method for enriching phenolic compounds and improving antioxidant activity in HB. Subsequently, the AUG-treated HB can be used to develop phenolic-rich germinated functional foods to further broaden the application of HB. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa