Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85.703
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 211-231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38603556

RESUMO

Almost all outer membrane proteins (OMPs) in Gram-negative bacteria contain a ß-barrel domain that spans the outer membrane (OM). To reach the OM, OMPs must be translocated across the inner membrane by the Sec machinery, transported across the crowded periplasmic space through the assistance of molecular chaperones, and finally assembled (folded and inserted into the OM) by the ß-barrel assembly machine. In this review, we discuss how considerable new insights into the contributions of these factors to OMP biogenesis have emerged in recent years through the development of novel experimental, computational, and predictive methods. In addition, we describe recent evidence that molecular machines that were thought to function independently might interact to form dynamic intermembrane supercomplexes. Finally, we discuss new results that suggest that OMPs are inserted primarily near the middle of the cell and packed into supramolecular structures (OMP islands) that are distributed throughout the OM.


Assuntos
Proteínas da Membrana Bacteriana Externa , Chaperonas Moleculares , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Transporte Proteico , Dobramento de Proteína , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/genética , Membrana Externa Bacteriana/metabolismo , Modelos Moleculares , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/química , Periplasma/metabolismo
2.
Cell ; 187(16): 4289-4304.e26, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38942015

RESUMO

Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-ß response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.


Assuntos
Matriz Extracelular , Homeostase , Mitocôndrias , Resposta a Proteínas não Dobradas , Matriz Extracelular/metabolismo , Animais , Mitocôndrias/metabolismo , Humanos , Fator de Crescimento Transformador beta/metabolismo , Dinâmica Mitocondrial , Camundongos , Transdução de Sinais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia
3.
Cell ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39243762

RESUMO

Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor ß (TGF-ß) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-ß and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-ß. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-ß gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.

4.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280375

RESUMO

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Assuntos
Intestinos , Fígado , Animais , Camundongos , Proliferação de Células , Fígado/metabolismo , PPAR alfa/metabolismo , Proteômica , Células-Tronco/metabolismo , Via de Sinalização Wnt , Intestinos/citologia , Intestinos/metabolismo
5.
Cell ; 187(10): 2375-2392.e33, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653238

RESUMO

Lysine lactylation is a post-translational modification that links cellular metabolism to protein function. Here, we find that AARS1 functions as a lactate sensor that mediates global lysine lacylation in tumor cells. AARS1 binds to lactate and catalyzes the formation of lactate-AMP, followed by transfer of lactate to the lysince acceptor residue. Proteomics studies reveal a large number of AARS1 targets, including p53 where lysine 120 and lysine 139 in the DNA binding domain are lactylated. Generation and utilization of p53 variants carrying constitutively lactylated lysine residues revealed that AARS1 lactylation of p53 hinders its liquid-liquid phase separation, DNA binding, and transcriptional activation. AARS1 expression and p53 lacylation correlate with poor prognosis among cancer patients carrying wild type p53. ß-alanine disrupts lactate binding to AARS1, reduces p53 lacylation, and mitigates tumorigenesis in animal models. We propose that AARS1 contributes to tumorigenesis by coupling tumor cell metabolism to proteome alteration.


Assuntos
Carcinogênese , Ácido Láctico , Proteína Supressora de Tumor p53 , Animais , Feminino , Humanos , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Lisina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/metabolismo , Masculino
6.
Cell ; 186(20): 4260-4270, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37729908

RESUMO

Recent Aß-immunotherapy trials have yielded the first clear evidence that removing aggregated Aß from the brains of symptomatic patients can slow the progression of Alzheimer's disease. The clinical benefit achieved in these trials has been modest, however, highlighting the need for both a deeper understanding of disease mechanisms and the importance of intervening early in the pathogenic cascade. An immunoprevention strategy for Alzheimer's disease is required that will integrate the findings from clinical trials with mechanistic insights from preclinical disease models to select promising antibodies, optimize the timing of intervention, identify early biomarkers, and mitigate potential side effects.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/imunologia , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Anticorpos/uso terapêutico , Imunoterapia , Animais
7.
Cell ; 186(18): 3845-3861.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37591240

RESUMO

Dopaminergic projections regulate various brain functions and are implicated in many neuropsychiatric disorders. There are two anatomically and functionally distinct dopaminergic projections connecting the midbrain to striatum: nigrostriatal, which controls movement, and mesolimbic, which regulates motivation. However, how these discrete dopaminergic synaptic connections are established is unknown. Through an unbiased search, we identify that two groups of antagonistic TGF-ß family members, bone morphogenetic protein (BMP)6/BMP2 and transforming growth factor (TGF)-ß2, regulate dopaminergic synapse development of nigrostriatal and mesolimbic neurons, respectively. Projection-preferential expression of their receptors contributes to specific synapse development. Downstream, Smad1 and Smad2 are specifically activated and required for dopaminergic synapse development and function in nigrostriatal vs. mesolimbic projections. Remarkably, Smad1 mutant mice show motor defects, whereas Smad2 mutant mice show lack of motivation. These results uncover the molecular logic underlying the proper establishment of functionally segregated dopaminergic synapses and may provide strategies to treat relevant, projection-specific disease symptoms by targeting specific BMPs/TGF-ß and/or Smads.


Assuntos
Corpo Estriado , Dopamina , Animais , Camundongos , Mesencéfalo , Motivação , Movimento , Sinapses
8.
Cell ; 186(2): 428-445.e27, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36626902

RESUMO

O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and ß-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/ß-catenin dual-specificity aptamers, we found that O-GlcNAcylation of ß-catenin stabilizes the protein by inhibiting its interaction with ß-TrCP. O-GlcNAc also increases ß-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.


Assuntos
Aptâmeros de Nucleotídeos , beta Catenina/metabolismo , Processamento de Proteína Pós-Traducional , Via de Sinalização Wnt , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo
9.
Cell ; 186(5): 1066-1085.e36, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868209

RESUMO

A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and ß-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.


Assuntos
Cromatina , Proteoma , Acilação , Mapeamento Cromossômico , Histonas , Sobrevivência Celular
10.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774681

RESUMO

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Assuntos
Doença de Alzheimer , Lobo Frontal , Microglia , Neurônios , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Microglia/patologia , Neurônios/patologia , Células Piramidais , Biópsia , Lobo Frontal/patologia , Análise da Expressão Gênica de Célula Única , Núcleo Celular/metabolismo , Núcleo Celular/patologia
11.
Cell ; 186(11): 2288-2312, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37236155

RESUMO

Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.


Assuntos
Inflamassomos , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/metabolismo , Morte Celular , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
12.
Annu Rev Biochem ; 91: 571-598, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35303793

RESUMO

The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research.


Assuntos
Neoplasias , Via de Sinalização Wnt , Animais , Diferenciação Celular , Neoplasias/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
13.
Annu Rev Biochem ; 91: 403-422, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729071

RESUMO

The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.


Assuntos
Amiloidose , Anti-Infecciosos , Doenças Neurodegenerativas , Amiloide/química , Proteínas Amiloidogênicas , Amiloidose/metabolismo , Antibacterianos , Anti-Infecciosos/farmacologia , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo
14.
Annu Rev Biochem ; 91: 221-243, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729073

RESUMO

Genetic code reprogramming has enabled us to ribosomally incorporate various nonproteinogenic amino acids (npAAs) into peptides in vitro. The repertoire of usable npAAs has been expanded to include not only l-α-amino acids with noncanonical sidechains but also those with noncanonical backbones. Despite successful single incorporation of npAAs, multiple and consecutive incorporations often suffer from low efficiency or are even unsuccessful. To overcome this stumbling block, engineering approaches have been used to modify ribosomes, EF-Tu, and tRNAs. Here, we provide an overview of these in vitro methods that are aimed at optimal expansion of the npAA repertoire and their applications for the development of de novo bioactive peptides containing various npAAs.


Assuntos
Aminoácidos , Código Genético , Aminoácidos/metabolismo , Peptídeos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
15.
Annu Rev Immunol ; 33: 49-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25493334

RESUMO

Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the exception of the IL-1 receptor antagonist, all IL-1 family cytokines lack a signal peptide and require proteolytic processing into an active molecule. One such unique protease is caspase-1, which is activated by protein platforms called the inflammasomes. However, increasing evidence suggests that inflammasomes and caspase-1 are not the only mechanism for processing IL-1 cytokines. IL-1 cytokines are often released as precursors and require extracellular processing for activity. Here we review the inflammasome-independent enzymatic processes that are able to activate IL-1 cytokines, paying special attention to neutrophil-derived serine proteases, which subsequently induce inflammation and modulate host defense. The inflammasome-independent processing of IL-1 cytokines has important consequences for understanding inflammatory diseases, and it impacts the design of IL-1-based modulatory therapies.


Assuntos
Citocinas/metabolismo , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Animais , Suscetibilidade a Doenças , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo
16.
Cell ; 185(7): 1143-1156.e13, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294859

RESUMO

Transmembrane ß barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the ß barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model ß barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "ß signal" motif of EspP to correctly orient ß strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated ß sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that ß sheets progressively fold toward BamA to form a ß barrel. Along with in vivo experiments that tracked ß barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate ß barrel folding.


Assuntos
Proteínas da Membrana Bacteriana Externa/ultraestrutura , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
17.
Cell ; 185(13): 2354-2369.e17, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35568036

RESUMO

Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.


Assuntos
Interferons , Fatores de Virulência , Animais , Antivirais , Sinalização do Cálcio , Células Epiteliais/metabolismo , Interferons/metabolismo , Camundongos , Fatores de Virulência/metabolismo
18.
Cell ; 185(10): 1661-1675.e16, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483373

RESUMO

ß-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that ß-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the ß-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that ß-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for ß-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of ß-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream ß-arrestin-mediated events are directed.


Assuntos
Fosfopeptídeos , Receptores Acoplados a Proteínas G , Fosfopeptídeos/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
19.
Cell ; 185(22): 4153-4169.e19, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36306735

RESUMO

Genetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aß plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2R47H variant associated with high AD risk fails to activate microglia via SYK. We found that SYK-deficient microglia cannot encase Aß plaques, accelerating brain pathology and behavioral deficits. SYK deficiency impaired the PI3K-AKT-GSK-3ß-mTOR pathway, incapacitating anabolic support required for attaining the DAM profile. However, SYK-deficient microglia proliferated and advanced to an Apoe-expressing prodromal stage of DAM; this pathway relied on the adapter DAP10, which also binds TREM2. Thus, microglial responses to Aß involve non-redundant SYK- and DAP10-pathways. Systemic administration of an antibody against CLEC7A, a receptor that directly activates SYK, rescued microglia activation in mice expressing the TREM2R47H allele, unveiling new options for AD immunotherapy.


Assuntos
Doença de Alzheimer , Microglia , Animais , Camundongos , Humanos , Microglia/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Quinase Syk/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
20.
Cell ; 185(19): 3533-3550.e27, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113427

RESUMO

Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbß3 and α4ß1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbß3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4ß1.


Assuntos
Desenho de Fármacos , Integrina alfa4beta1 , Conformação Proteica , Serina , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa