Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
World J Microbiol Biotechnol ; 40(4): 130, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460032

RESUMO

ß-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable ß-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic ß-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.


Assuntos
Bactérias , beta-Manosidase , beta-Manosidase/química , Bactérias/metabolismo , Engenharia Genética , Biotecnologia/métodos , Mananas/química , Bioengenharia
2.
World J Microbiol Biotechnol ; 40(6): 169, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630389

RESUMO

Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. ß-Mannanase is the principal mannan-degrading enzyme, which breaks down the ß-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of ß-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial ß-mannanases are reviewed, the future research directions for microbial ß-mannanases are also outlined.


Assuntos
Mananas , beta-Manosidase , beta-Manosidase/genética , Temperatura
3.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335120

RESUMO

One of the emerging non-digestible oligosaccharide prebiotics is ß-mannooligosaccharides (ß-MOS). ß-MOS are ß-mannan derived oligosaccharides, they are selectively fermented by gut microbiota, promoting the growth of beneficial microorganisms (probiotics), whereas the growth of enteric pathogens remains unaffected or gets inhibited in their presence, along with production of metabolites such as short-chain fatty acids. ß-MOS also exhibit several other bioactive properties and health-promoting effects. Production of ß-MOS using the enzymes such as ß-mannanases is the most effective and eco-friendly approach. For the application of ß-MOS on a large scale, their production needs to be standardized using low-cost substrates, efficient enzymes and optimization of the production conditions. Moreover, for their application, detailed in-vivo and clinical studies are required. For this, a thorough information of various studies in this regard is needed. The current review provides a comprehensive account of the enzymatic production of ß-MOS along with an evaluation of their prebiotic and other bioactive properties. Their characterization, structural-functional relationship and in-vivo studies have also been summarized. Research gaps and future prospects have also been discussed, which will help in conducting further research for the commercialization of ß-MOS as prebiotics, functional food ingredients and therapeutic agents.

4.
Prep Biochem Biotechnol ; 53(9): 1120-1136, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36752611

RESUMO

This study reported physicochemical properties of purified endo-1,4-ß-mannanase from the wild type, Alcaligenes sp. and its most promising chemical mutant. The crude enzymes from fermentation of wild and mutant bacteria were purified by ammonium sulfate precipitation, ion exchange and gel-filtration chromatography followed by an investigation of the physicochemical properties of purified wild and mutant enzymes. ß-mannanase from wild and mutant Alcaligenes sp. exhibited 1.75 and 1.6 purification-folds with percentage recoveries of 2.6 and 2.5% and molecular weights of 61.6 and 80 kDa respectively. The wild and mutant ß-mannanase were most active at 40 and 50 °C with optimum pH 6.0 for both and were thermostable with very high percentage activity but the wild-type ß-mannanase showed better stability over a broad pH activity. The ß-mannanase activity from the parent strain was stimulated in the presence of Mn2+, Co2+, Zn2+, Mg2+ and Na+. Vmax and Km for the wild type and its mutant were found to be 0.747 U//mL/min and 5.2 × 10-4 mg/mL, and 0.247 U/mL/min and 2.47 × 10-4 mg/mL, respectively. Changes that occurred in the nucleotide sequences of the most improved mutant may be attributed to its thermo-stability, thermo-tolerant and high substrate affinity- desired properties for improved bioprocesses.


Assuntos
Mutagênicos , beta-Manosidase , beta-Manosidase/química , Alcaligenes/genética , Alcaligenes/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
5.
World J Microbiol Biotechnol ; 39(11): 304, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691038

RESUMO

ß-mannanase catalyzes the hydrolysis of mannans ß-1,4-mannosidic linkages to produce industrially relevant oligosaccharides. These enzymes have numerous important applications in the detergent, food, and feed industries, particularly those that are resistant to harsh environmental conditions such as salts and heat. While, moderately salt-tolerant ß-mannanases are already reported, existence of a high halotolerant ß-mannanase is still elusive. This study aims to report the first purification and characterization of ManH1, an extremely halotolerant ß-mannanase from the halotolerant B. velezensis strain H1. Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) analysis revealed a single major peak with a molecular mass of 37.8 kDa demonstrating its purity. The purified enzyme showed a good thermostability as no activity was lost after a 48 h incubation under optimal conditions of 50 °C and pH 5.5. The enzyme's salt activation nature was revealed when its maximum activity was obtained in the presence of 4 M NaCl, it doubled compared to the no-salt condition. Moreover, NaCl strengthens its resistance to thermal denaturation, as its melting temperature (Tm) increased steadily with increasing NaCl concentrations reaching 75.5 °C in the presence of 2.5 M NaCl. The Km and Vmax values were 5.63 mg/mL and 333.33 µmol/min/mL, respectively, using carob galactomannan (CG) as a substrate. The enzyme showed a significant ability to produce manno-oligosaccharides (MOS) from lignocellulosic biomass releasing 13 mg/mL of reducing sugars from olive mill wastes (OMW) after 24 h incubation. The results revealed that this enzyme may have significant commercial values for agro-waste treatment, and other potential applications.


Assuntos
Bacillus , Cloreto de Sódio , beta-Manosidase , Biomassa
6.
Appl Microbiol Biotechnol ; 106(5-6): 1919-1932, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35179629

RESUMO

Partially hydrolyzed konjac powder (PHKP) can be used to increase the daily intake of dietary fibers of consumers. To produce PHKP by enzymatic hydrolysis, a novel ß-mannanase gene (McMan5B) from Malbranchea cinnamomea was expressed in Pichia pastoris. It showed a low identity of less than 52% with other GH family 5 ß-mannanases. Through high cell density fermentation, the highest ß-mannanase activity of 42200 U mL-1 was obtained. McMan5B showed the maximal activity at pH 7.5 and 75 °C, respectively. It exhibited excellent pH stability and thermostability. Due to the different residues (Phe214, Pro253, and His328) in catalytic groove and the change of ß2-α2 loop, McMan5B showed unique hydrolysis property as compared to other ß-mannanases. The enzyme was employed to hydrolyze konjac powder for controllable production of PHKP with a weight-average molecular weight of 22000 Da (average degree of polymerization 136). Furthermore, the influence of PHKP (1.0%-4.0%) on the qualities of steamed bread was evaluated. The steamed bread adding 3.0% PHKP had the maximum specific volume and the minimum hardness, which showed 11.0% increment and 25.4% decrement as compared to the control, respectively. Thus, a suitable ß-mannanase for PHKP controllable production and a fiber supplement for steamed bread preparation were provided in this study. KEY POINTS: • A novel ß-mannanase gene (McMan5B) was cloned from Malbranchea cinnamomea and expressed in Pichia pastoris at high level. • McMan5B hydrolyzed konjac powder to yield partially hydrolyzed konjac powder (PHKP) instead of manno-oligosaccharides. • PHKP showed more positive effect on the quality of steamed bread than many other dietary fibers including konjac powder.


Assuntos
Amorphophallus , beta-Manosidase , Amorphophallus/genética , Clonagem Molecular , Concentração de Íons de Hidrogênio , Mananas/química , Onygenales , Pichia/genética , Pós , beta-Manosidase/química , beta-Manosidase/genética
7.
J Basic Microbiol ; 62(7): 815-823, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475500

RESUMO

In this study, first, ß-mannanase gene man derived from Bacillus amyloliquefaciens CGMCC1.857 was cloned and expressed in Bacillus subtilis 168 to generate B. subtilis M1. However, the extracellular ß-mannanase activity of B. subtilis M1 was not very high. To further increase extracellular ß-mannanase extracytoplasmic molecular chaperone, PrsA lipoprotein was tandem expressed with man gene in B. subtilis 168 to yield B. subtilis M2. The secretion of ß-mannanase of B. subtilis M2 was enhanced by 15.4%, compared with the control B. subtilis M1. Subsequently, process optimization strategies were also developed to enhance ß-mannanase production by B. subtilis 168 M2. It was noted that the optimal temperature for ß-mannanase production (25°C) was different from the optimal growth temperature (37°C) for B. subtilis. Based on these findings, a two-stage temperature control strategy was proposed where the bacterial culture was maintained at 37°C for the first 12 h to obtain a high rate of cell growth, followed by lowering the temperature to 25°C to enhance ß-mannanase production. Using this strategy, the extracellular ß-mannanase activity reached 5016 ± 167 U/ml at about 36 h, which was 19.1% greater than the best result obtained using a constant temperature (25°C). The result of this study showed that PrsA lipoprotein overexpression and two-stage temperature control strategy were more efficient for ß-mannanase fermentation in B. subtilis.


Assuntos
Bacillus subtilis , beta-Manosidase , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Fermentação , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Temperatura , beta-Manosidase/genética , beta-Manosidase/metabolismo
8.
Prep Biochem Biotechnol ; 52(10): 1151-1159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35175890

RESUMO

A ß-mannanase-producing lactic acid bacteria (LAB) was identified as Weissella cibaria F1 according to physiological and biochemical properties, morphological observations, partial sequence of 16S rRNA gene and API 50 CHL test. In order to improve the yield of ß-mannanase, the response surface methodology (RSM) was originally used to optimize the fermentation conditions. The optimization results showed that when the konjac powder, glucose, and initial pH were 9.46 g/L, 14.47 g/L and 5.67, respectively, the ß-mannanase activity increased to 38.81 ± 0.33 U/mL, which was 1.33 times compared to initial yield (29.28 ± 0.26 U/mL). This result was also supported by larger clearance on the konjac powder-MRS agar plate through Congo Red dyeing. The W. cibaria F1 ß-mannanase could improve the clarity of five fruits juice, i.e., apple, orange, peach, persimmon and blue honeysuckle. Among these, peach juice was the most obvious, clarity increasing by 12.8%. These results collectively indicated that W. cibaria F1 ß-mannanase had an applicable potential in food-level fields.


Assuntos
Weissella , beta-Manosidase , beta-Manosidase/genética , RNA Ribossômico 16S/genética , Pós , Weissella/genética
9.
Molecules ; 27(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35056877

RESUMO

Palm kernel cake (PKC) is an abundant side stream that can only be added to non-ruminant feed in small concentrations due to its content of antinutritional factors, mainly galactomannan, which cannot be digested by non-ruminants. ß-mannanases can be added to partially hydrolyze galactomannan to form mannose oligosaccharides, which are known to be prebiotic. We here investigate the action of a ß-mannanase from B. subtilis on PKC by colorimetry, NMR and fluorescence microscopy. The amount of mannan oligosaccharides in solution was significantly increased by the ß-mannanase and their degree of polymerization (DP) was significantly reduced. There was a dose-response behavior in that larger ß-mannanase concentrations increased the amount of soluble mannose oligosaccharides while reducing their average DP. Using confocal immunofluorescence microscopy, solubilization of galactomannan in PKC was clearly visualized. Images show a clear disruption of the cellulose and galactomannan structures of the PKC cell walls. We thus show in this study that using commercial dosages of ß-mannanase on PKC can lead to formation of prebiotic compounds. Thus, this study suggests that utilization of PKC in poultry feed formulation might be increased by addition of a ß-mannanase and would improve the return on investment.


Assuntos
beta-Manosidase
10.
Prep Biochem Biotechnol ; 52(7): 845-853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34826265

RESUMO

Bacillus licheniformis HDYM-04 was isolated in flax retting water and showed ß-mannanase activity. Carbon sources for ß-mannanase production, as well as the fermentation conditions and feeding strategy, were optimized in shake flasks. When glucose or konjac powder was used as the carbon source, the ß-mannanase activity was 288.13 ± 21.59 U/mL and 696.35 ± 23.47 U/mL at 24 h, respectively, which was approximately 4.4- to 10.68-fold higher than the values obtained with wheat powder. When 0.5% (w/v) glucose and 1% (w/v) konjac powder were added together, maximum enzyme activities of 789.07 ± 25.82 U/mL were obtained, an increase of 13.35% compared to the unoptimized cultures with only 1% (w/v) konjac powder. The enzyme activity decreased in the presence of 1% (w/v) konjac powder, but the highest enzyme activity was 1,533.26 ± 33.74 U/mL, a 1.2-fold increase compared with that in nonoptimized cultures; when 0.5% (w/v) glucose was used, the highest enzyme activity was 966.53 ± 27.84 U/mL, an increase in ß-mannanase activity of 38.79% compared with control cultures. In this study, by optimizing fed-batch fermentation conditions, the yield of ß-mannanase produced by HDYM-04 was increased, laying the foundation for the industrial application and further research of B. licheniformis HDYM-04.


Assuntos
Bacillus licheniformis , beta-Manosidase , Bacillus licheniformis/metabolismo , Carbono , Fermentação , Glucose , Pós , beta-Manosidase/metabolismo
11.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630684

RESUMO

Spent sulfite liquor (SSL) from softwood processing is rich in hemicellulose (acetyl galactoglucomannan, AcGGM), lignin, and lignin-derived compounds. We investigated the effect of sequential AcGGM purification on the enzymatic bioconversion of AcGGM. SSL was processed through three consecutive purification steps (membrane filtration, precipitation, and adsorption) to obtain AcGGM with increasing purity. Significant reduction (~99%) in lignin content and modest loss (~18%) of polysaccharides was observed during purification from the least pure preparation (UFR), obtained by membrane filtration, compared to the purest preparation (AD), obtained by adsorption. AcGGM (~14.5 kDa) was the major polysaccharide in the preparations; its enzymatic hydrolysis was assessed by reducing sugar and high-performance anion-exchange chromatography analysis. The hydrolysis of the UFR preparation with Viscozyme L or Trichoderma reesei ß-mannanase TrMan5A (1 mg/mL) resulted in less than ~50% bioconversion of AcGGM. The AcGGM in the AD preparation was hydrolyzed to a higher degree (~67% with TrMan5A and 80% with Viscozyme L) and showed the highest conversion rate. This indicates that SSL contains enzyme-inhibitory compounds (e.g., lignin and lignin-derived compounds such as lignosulfonates) which were successfully removed.


Assuntos
Lignina , Polissacarídeos , Hidrólise , Lignina/química , Sulfitos
12.
Bioprocess Biosyst Eng ; 44(3): 549-561, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33200291

RESUMO

An endo-1,4-ß-mannanase gene (manB) from a Bacillus pumilus Nsic-2 grown in a stinky tofu emulsion was cloned and expressed in Pichia pastoris GS115. After characterized, the endo-1,4-ß-mannanase (manB) show maximum activity at pH 6.0 and 50 °C with LBG as substrate and perform high stability at a range of pH 6-8. After applying for a shake flask fermentation, the specific activity of manB reached 3462 U/mg. To produce mannose, the soybean meal (SBM) was pretreated by biological fermentation for 11 days with Penicillium brevicompactum, and then hydrolyzed by manB. As a result, mannose yield reached 3.58 g per 1 kg SBM which indicated that 0.358% SBM was converted into mannose after hydrolyzation, and mean a total 20% mannan of SBM converting into mannose, while the control group demonstrated only 1.78% conversion. An effective ß-mannanase for the bioconversion of mannan-rich biomasses and an efficient method to produce mannose with soybean meal were introduced.


Assuntos
Bacillus pumilus/genética , Proteínas de Bactérias/biossíntese , Expressão Gênica , Glycine max/química , Penicillium/crescimento & desenvolvimento , Saccharomycetales , beta-Manosidase/biossíntese , Bacillus pumilus/enzimologia , Proteínas de Bactérias/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , beta-Manosidase/genética
13.
Microb Cell Fact ; 19(1): 142, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665004

RESUMO

BACKGROUND: ß-mannanase can hydrolyze ß-1,4 glycosidic bond of mannan by the manner of endoglycosidase to generate mannan-oligosaccharides. Currently, ß-mannanase has been widely applied in food, medicine, textile, paper and petroleum exploitation industries. ß-mannanase is widespread in various organisms, however, microorganisms are the main source of ß-mannanases. Microbial ß-mannanases display wider pH range, temperature range and better thermostability, acid and alkali resistance, and substrate specificity than those from animals and plants. Therefore microbial ß-mannanases are highly valued by researchers. Recombinant bacteria constructed by gene engineering and modified by protein engineering have been widely applied to produce ß-mannanase, which shows more advantages than traditional microbial fermentation in various aspects. RESULTS: A ß-mannanase gene (Man1E), which encoded 731 amino acid residues, was cloned from Enterobacter aerogenes. Man1E was classified as Glycoside Hydrolase family 1. The bSiteFinder prediction showed that there were eight essential residues in the catalytic center of Man1E as Trp166, Trp168, Asn229, Glu230, Tyr281, Glu309, Trp341 and Lys374. The catalytic module and carbohydrate binding module (CBM) of Man1E were homologously modeled. Superposition analysis and molecular docking revealed the residues located in the catalytic module of Man1E and the CBM of Man1E. The recombinant enzyme was successfully expressed, purified, and detected about 82.5 kDa by SDS-PAGE. The optimal reaction condition was 55 °C and pH 6.5. The enzyme exhibited high stability below 60 °C, and in the range of pH 3.5-8.5. The ß-mannanase activity was activated by low concentration of Co2+, Mn2+, Zn2+, Ba2+ and Ca2+. Man1E showed the highest affinity for Locust bean gum (LBG). The Km and Vmax values for LBG were 3.09 ± 0.16 mg/mL and 909.10 ± 3.85 µmol/(mL min), respectively. CONCLUSIONS: A new type of ß-mannanase with high activity from E. aerogenes is heterologously expressed and characterized. The enzyme belongs to an unreported ß-mannanase family (CH1 family). It displays good pH and temperature features and excellent catalysis capacity for LBG and KGM. This study lays the foundation for future application and molecular modification to improve its catalytic efficiency and substrate specificity.


Assuntos
Domínio Catalítico , Enterobacter aerogenes/enzimologia , Enterobacter aerogenes/genética , beta-Manosidase/genética , beta-Manosidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Genes Bacterianos , Microbiologia Industrial , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752106

RESUMO

Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce ß-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum ß-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated ß-mannanase activity was 805.12 U/mL, which was close to the predicted ß-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of ß-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of ß-mannanase activity by Bacillus subtilis ATCC11774.


Assuntos
Bacillus subtilis/metabolismo , Meios de Cultura/química , beta-Manosidase/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Concentração de Íons de Hidrogênio , Sulfato de Magnésio/química , Cloreto de Sódio/química , Temperatura
15.
Biotechnol Appl Biochem ; 66(5): 858-869, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31402491

RESUMO

ß-Mannanases are crucial enzymes for the breakdown of mannans. As Mannans are being considered as antinutritional factors in poultry production, the search for mannanase-producing probiotic bacteria is now attracting considerable attention as a strategy to enhance nutrients bioavailability. Five soil born Bacilli (US134, US150, US176, US180, and US191) were selected for their ability to produce extracellular ß-mannanases that were biochemically characterized. The probiotic properties of these strains were determined to assess their potential as animal feed supplements. Bacillus subtilis US191 was shown to be sensitive to all antibiotics tested, to inhibit growth of the bacterial pathogens tested, and to produce a thermostable ß-mannanase. It exhibited a notable acid and bovine bile tolerance and high ability to form biofilm. These features may favor its adherence to the intestinal epithelial cells allowing its survival and persistence in the digestive tract. Furthermore, our study revealed that US191 was among the strains showing the highest ability to digest wheat dry matter in vitro when compared to the commercial feed additive Rovabio® Max. Altogether, our findings suggest that the ß-mannanase producer B.subtilis US191 is a promising probiotic candidate for the feed industry.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Probióticos/metabolismo , beta-Manosidase/metabolismo , Animais , Bacillus subtilis/classificação , Probióticos/química , Probióticos/classificação , beta-Manosidase/química , beta-Manosidase/isolamento & purificação
16.
J Dairy Sci ; 102(5): 4198-4204, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30879811

RESUMO

Exogenous enzymes have been used to improve nutrient utilization in several species of livestock, particularly swine and poultry. In addition, improved immunological and metabolic traits have been reported in nonruminants. The objective of this study was to determine the effects of ß-mannanase supplementation on milk yield and composition, and immunological and metabolic responses in lactating Holstein dairy cows. Two weeks after calving, 20 Holstein cows (10 multiparous and 10 primiparous) were blocked by parity and assigned to 1 of 2 diets for 182 d. All cows were housed in the same environment and fed the same basal diet. The basal diet of the treatment group was supplemented with ß-mannanase (CTCBio Inc., Seoul, South Korea) at 0.1% of concentrate dry matter. No differences were detected between the control and enzyme supplement groups in milk yield parameters or milk composition. Supplementation of ß-mannanase enzyme reduced blood haptoglobin levels in supplemented multiparous cows compared with controls. Furthermore, nonesterified fatty acid concentration levels tended to be lower in cows fed ß-mannanase, regardless of parity. Neither immunoglobulin G nor milk somatic cell count was affected by ß-mannanase supplementation, regardless of parity. The number of insemination services tended to be lower in cows fed diets supplemented with ß-mannanase. Results from this study suggest that supplementation of ß-mannanase exogenous enzyme could help to reduce instances of systemic inflammation and decrease fat mobilization in lactating Holstein cows. Multiparous cows are considered susceptible to acute infections and inflammation; thus, the enzyme had a greater effect in multiparous cows.


Assuntos
Bovinos , Dieta/veterinária , Suplementos Nutricionais , Imunidade/efeitos dos fármacos , Lactação , Leite , beta-Manosidase/farmacologia , Animais , Contagem de Células , Feminino , Leite/citologia , Paridade , Gravidez , República da Coreia
17.
World J Microbiol Biotechnol ; 35(2): 32, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30701316

RESUMO

Extremophilic microorganisms are valuable sources of enzymes for various industrial applications. In fact, given their optimal catalytic activity and operational stability under harsh physical and chemical conditions, they represent a suitable alternative to their mesophilic counterparts. For instance, extremophilic enzymes are important to foster the switch from fossil-based to lignocellulose-based industrial processes. Indeed, more stable enzymes are needed, because the conversion of the lignocellulosic biomass to a wide palette of value-added products requires extreme chemo-physical pre-treatments. Galactomannans are part of the hemicellulose fraction in lignocellulosic biomass. They are heteropolymers constituted by a ß-1,4-linked mannan backbone substituted with side chains of α-1,6-linked galactose residues. Therefore, the joint action of different hydrolytic enzymes (i.e. ß-mannanase, ß-mannosidase and α-galactosidase) is needed to accomplish their complete hydrolysis. So far, numerous galactomannan-degrading enzymes have been isolated and characterized from extremophilic microorganisms. Besides applications in biorefinery, these biocatalysts are also useful to improve the quality (i.e. digestibility and prebiotic properties) of food and feed as well as in paper industries to aid the pulp bleaching process. In this review, an overview about the structure, function and applications of galactomannans is provided. Moreover, a survey of (hyper)-thermophilic galactomannans-degrading enzymes, mainly characterized in the last decade, has been carried out. These extremozymes are described in the light of their biotechnological application in industrial processes requiring harsh conditions.


Assuntos
Bactérias/enzimologia , Mananas/metabolismo , Manosidases/química , alfa-Galactosidase/química , beta-Manosidase/química , Bactérias/química , Bactérias/genética , Biotecnologia , Estabilidade Enzimática , Galactose/análogos & derivados , Mananas/química , Manosidases/genética , Manosidases/metabolismo , Plantas/química , Plantas/enzimologia , Plantas/genética , Plantas/metabolismo , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , beta-Manosidase/genética , beta-Manosidase/metabolismo
18.
Protein Expr Purif ; 146: 23-26, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29378260

RESUMO

Endo-1,4-ß-mannanase is an enzyme that can catalyze the random hydrolysis of ß-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans and offers many applications in different biotechnology industries. Purification and kinetic properties of the endo-1,4-ß-mannanase from recombinant Escherichia coli strain KMAN-3 were examined. Recombinant ß-mannanase (KMAN-3) was purified 50.5 fold using Ni-NTA Agarose resin and specific activity of 11900 U/mg protein was obtained. Purified KMAN-3 showed a single band on SDS-PAGE with a molecular weight of 43 kDa. Km and Vmax values of KMAN-3 on ivory nut mannan, locust bean gum, defatted copra meal and konjac glucomannan were 243, 3.83 × 105 37 and 2.13 × 106 mg ml-1 and 2940, 61,100, 3930 and 1.56 × 1010 mg-1, respectively. Carboxymethyl cellulose was not digested by KMAN-3.


Assuntos
Klebsiella oxytoca/enzimologia , beta-Manosidase/metabolismo , Clonagem Molecular/métodos , Escherichia coli/genética , Galactose/análogos & derivados , Klebsiella oxytoca/genética , Mananas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Manosidase/genética
19.
Microb Cell Fact ; 17(1): 124, 2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30098601

RESUMO

BACKGROUND: ß-Mannanase catalyzes the cleavage of ß-1,4-linked internal linkages of mannan backbone randomly to produce new chain ends. Alkaline and thermostable ß-mannanases provide obvious advantages for many applications in biobleaching of pulp and paper, detergent industry, oil grilling operation and enzymatic production of mannooligosaccharides. However, only a few of them are commercially exploited as wild or recombinant enzymes, and none heterologous and secretory expression of alkaline ß-mannanase in Bacillus subtilis expression system was reported. Alkaliphilic Bacillus clausii S10 showed high ß-mannanase activity at alkaline condition. In this study, this ß-mannanase was cloned, purified and characterized. The high-level secretory expression in B. subtilis was also studied. RESULTS: A thermo-alkaline ß-mannanase (BcManA) gene encoding a 317-amino acid protein from alkaliphilic Bacillus clausii strain was cloned and expressed in Escherichia coli. The purified mature BcManA exhibited maximum activity at pH 9.5 and 75 °C with good stability at pH 7.0-11.5 and below 80 °C. BcManA demonstrated high cleavage capability on polysaccharides containing ß-1,4-mannosidic linkages, such as konjac glucomannan, locust bean gum, guar gum and sesbania gum. The highest specific activity of 2366.2 U mg-1 was observed on konjac glucomannan with the Km and kcat value of 0.62 g l-1 and 1238.9 s-1, respectively. The hydrolysis products were mainly oligosaccharides with a higher degree of polymerization than biose. BcManA also cleaved manno-oligosaccharides with polymerization degree more than 3 without transglycosylation. Furthermore, six signal peptides and two strong promoters were used for efficiently secreted expression optimization in B. subtilis WB600 and the highest extracellular activity of 2374 U ml-1 with secretory rate of 98.5% was obtained using SPlipA and P43 after 72 h cultivation in 2 × SR medium. By medium optimization using cheap nitrogen and carbon source of peanut meal and glucose, the extracellular activity reached 6041 U ml-1 after 72 h cultivation with 6% inoculum size by shake flask fermentation. CONCLUSIONS: The thermo-alkaline ß-mannanase BcManA showed good thermal and pH stability and high catalytic efficiency towards konjac glucomannan and locust bean gum, which distinguished from other reported ß-mannanases and was a promising thermo-alkaline ß-mannanase for potential industrial application. The extracellular BcManA yield of 6041 U ml-1, which was to date the highest reported yield by flask shake, was obtained in B. subtilis with constitutive expression vector. This is the first report for secretory expression of alkaline ß-mannanase in B. subtilis protein expression system, which would significantly cut down the production cost of this enzyme. Also this research would be helpful for secretory expression of other ß-mannanases in B. subtilis.


Assuntos
Bacillus clausii/metabolismo , Bacillus subtilis/metabolismo , beta-Manosidase/genética , Bacillus clausii/genética , Bacillus subtilis/genética
20.
Appl Microbiol Biotechnol ; 102(12): 5149-5163, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680901

RESUMO

ß-Mannanases catalyze the conversion and modification of ß-mannans and may, in addition to hydrolysis, also be capable of transglycosylation which can result in enzymatic synthesis of novel glycoconjugates. Using alcohols as glycosyl acceptors (alcoholysis), ß-mannanases can potentially be used to synthesize alkyl glycosides, biodegradable surfactants, from renewable ß-mannans. In this paper, we investigate the synthesis of alkyl mannooligosides using glycoside hydrolase family 5 ß-mannanases from the fungi Trichoderma reesei (TrMan5A and TrMan5A-R171K) and Aspergillus nidulans (AnMan5C). To evaluate ß-mannanase alcoholysis capacity, a novel mass spectrometry-based method was developed that allows for relative comparison of the formation of alcoholysis products using different enzymes or reaction conditions. Differences in alcoholysis capacity and potential secondary hydrolysis of alkyl mannooligosides were observed when comparing alcoholysis catalyzed by the three ß-mannanases using methanol or 1-hexanol as acceptor. Among the three ß-mannanases studied, TrMan5A was the most efficient in producing hexyl mannooligosides with 1-hexanol as acceptor. Hexyl mannooligosides were synthesized using TrMan5A and purified using high-performance liquid chromatography. The data suggests a high selectivity of TrMan5A for 1-hexanol as acceptor over water. The synthesized hexyl mannooligosides were structurally characterized using nuclear magnetic resonance, with results in agreement with their predicted ß-conformation. The surfactant properties of the synthesized hexyl mannooligosides were evaluated using tensiometry, showing that they have similar micelle-forming properties as commercially available hexyl glucosides. The present paper demonstrates the possibility of using ß-mannanases for alkyl glycoside synthesis and increases the potential utilization of renewable ß-mannans.


Assuntos
Aspergillus nidulans/enzimologia , Glicosídeos/biossíntese , Trichoderma/enzimologia , beta-Manosidase/metabolismo , Hidrólise , Mananas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa