Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.580
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Physiol Rev ; 103(2): 1423-1485, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36422994

RESUMO

The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the ß-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.


Assuntos
Insulina , Papilas Gustativas , Humanos , Insulina/metabolismo , Paladar/fisiologia , Glicemia/metabolismo , Transdução de Sinais
2.
Physiol Rev ; 103(1): 7-30, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635320

RESUMO

In this paper, we provide an overview of the evolution of the definition of hyperglycemia during the past century and the alterations in glucose dynamics that cause fasting and postprandial hyperglycemia. We discuss how extensive mechanistic, physiological research into the factors and pathways that regulate the appearance of glucose in the circulation and its uptake and metabolism by tissues and organs has contributed knowledge that has advanced our understanding of different types of hyperglycemia, namely prediabetes and diabetes and their subtypes (impaired fasting plasma glucose, impaired glucose tolerance, combined impaired fasting plasma glucose, impaired glucose tolerance, type 1 diabetes, type 2 diabetes, gestational diabetes mellitus), their relationships with medical complications, and how to prevent and treat hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Hiperglicemia , Estado Pré-Diabético , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose , Intolerância à Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Estado Pré-Diabético/diagnóstico , Gravidez , Açúcares
3.
Genes Dev ; 35(5-6): 307-328, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649162

RESUMO

Obesity is the most common cause of insulin resistance, and the current obesity epidemic is driving a parallel rise in the incidence of T2DM. It is now widely recognized that chronic, subacute tissue inflammation is a major etiologic component of the pathogenesis of insulin resistance and metabolic dysfunction in obesity. Here, we summarize recent advances in our understanding of immunometabolism. We discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Last, we also review current and potential new therapeutic strategies based on immunomodulation.


Assuntos
Inflamação , Doenças Metabólicas/fisiopatologia , Tecido Adiposo/citologia , Tecido Adiposo/fisiopatologia , Hipóxia Celular , Doença Crônica , Exossomos/metabolismo , Humanos , Imunomodulação , Doenças Metabólicas/etiologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/terapia
4.
Genes Dev ; 34(23-24): 1559-1561, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262142

RESUMO

In vivo regeneration of ß cells provides hope for self-renewal of functional insulin-secreting cells following ß-cell failure, a historically fatal condition now sustainable only by administration of exogenous insulin. Despite advances in the treatment of diabetes mellitus, the path toward endogenous renewal of ß-cell populations has remained elusive. Intensive efforts have focused on elucidating pancreatic transcriptional programs that can drive the division and (trans-)differentiation of non-ß cells to produce insulin. A surprise has been the identification of an essential role of the molecular circadian clock in the regulation of competent insulin-producing ß cells. In this issue of Genes & Development, work by Petrenko and colleagues (pp. 1650-1665) now shows a requirement for the intrinsic clock in the regenerative capacity of insulin-producing cells following genetic ablation of ß cells. These studies raise the possibility that enhancing core clock activity may provide an adjuvant in cell replacement therapies.


Assuntos
Relógios Circadianos , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Insulina , Pâncreas
5.
Genes Dev ; 34(23-24): 1650-1665, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184223

RESUMO

Circadian clocks in pancreatic islets participate in the regulation of glucose homeostasis. Here we examined the role of these timekeepers in ß-cell regeneration after the massive ablation of ß cells by doxycycline-induced expression of diphtheria toxin A (DTA) in Insulin-rtTA/TET-DTA mice. Since we crossed reporter genes expressing α- and ß-cell-specific fluorescent proteins into these mice, we could follow the fate of α- and ß cells separately. As expected, DTA induction resulted in an acute hyperglycemia, which was accompanied by dramatic changes in gene expression in residual ß cells. In contrast, only temporal alterations of gene expression were observed in α cells. Interestingly, ß cells entered S phase preferentially during the nocturnal activity phase, indicating that the diurnal rhythm also plays a role in the orchestration of ß-cell regeneration. Indeed, in arrhythmic Bmal1-deficient mice, which lack circadian clocks, no compensatory ß-cell proliferation was observed, and the ß-cell ablation led to aggravated hyperglycemia, hyperglucagonemia, and fatal diabetes.


Assuntos
Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Células Secretoras de Insulina/citologia , Pâncreas/fisiologia , Regeneração/genética , Animais , Proliferação de Células/genética , Ritmo Circadiano , Células Secretoras de Glucagon/citologia , Camundongos , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 121(8): e2312621121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346191

RESUMO

One of the hallmarks of type 1 but also type 2 diabetes is pancreatic islet inflammation, associated with altered pancreatic islet function and structure, if unresolved. IL-1ß is a proinflammatory cytokine which detrimentally affects ß-cell function. In the course of diabetes, complement components, including the central complement protein C3, are deregulated. Previously, we reported high C3 expression in human pancreatic islets, with upregulation after IL-1ß treatment. In the current investigation, using primary human and rodent material and CRISPR/Cas9 gene-edited ß-cells deficient in C3, or producing only cytosolic C3 from a noncanonical in-frame start codon, we report a protective effect of C3 against IL-1ß-induced ß-cell death, that is attributed to the cytosolic fraction of C3. Further investigation revealed that intracellular C3 alleviates IL-1ß-induced ß-cell death, by interaction with and inhibition of Fyn-related kinase (FRK), which is involved in the response of ß-cells to cytokines. Furthermore, these data were supported by increased ß-cell death in vivo in a ß-cell-specific C3 knockout mouse. Our data indicate that a functional, cytoprotective association exists between FRK and cytosolic C3.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Morte Celular , Citocinas/metabolismo , Camundongos Knockout
7.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36897579

RESUMO

Pancreatic ε-cells producing ghrelin are one type of endocrine cell found in islets, which have been shown to influence other intra-islet cells, especially in regulating the function of ß cells. However, the role of such cells during ß-cell regeneration is currently unknown. Here, using a zebrafish nitroreductase (NTR)-mediated ß-cell ablation model, we reveal that ghrelin-positive ε-cells in the pancreas act as contributors to neogenic ß-cells after extreme ß-cell loss. Further studies show that the overexpression of ghrelin or the expansion of ε-cells potentiates ß-cell regeneration. Lineage tracing confirms that a proportion of embryonic ε-cells can transdifferentiate to ß-cells, and that the deletion of Pax4 enhances this transdifferentiation of ε-cells to ß-cells. Mechanistically, Pax4 binds to the ghrelin regulatory region and represses its transcription. Thus, deletion of Pax4 derepresses ghrelin expression and causes producing more ghrelin-positive cells, enhancing the transdifferentiation of ε-cells to ß-cells and consequently potentiating ß-cell regeneration. Our findings reveal a previously unreported role for ε-cells during zebrafish ß-cell regeneration, indicating that Pax4 regulates ghrelin transcription and mediates the conversion of embryonic ε-cells to ß-cells after extreme ß-cell loss.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Grelina/metabolismo , Proteínas de Homeodomínio/metabolismo , Pâncreas , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(25): e2209810120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307472

RESUMO

Patients with type 1 diabetes (T1D) suffer from insufficient functional ß-cell mass, which results from infiltration of inflammatory cells and cytokine-mediated ß-cell death. Previous studies demonstrated the beneficial effects of agonists of growth hormone-releasing hormone receptor (GHRH-R), such as MR-409 on preconditioning of islets in a transplantation model. However, the therapeutic potential and protective mechanisms of GHRH-R agonists on models of T1D diabetes have not been explored. Using in vitro and in vivo models of T1D, we assessed the protective propertie of the GHRH agonist, MR409 on ß-cells. The treatment of insulinoma cell lines and rodent and human islets with MR-409 induces Akt signaling by induction of insulin receptor substrate 2 (IRS2), a master regulator of survival and growth in ß-cells, in a PKA-dependent manner. The increase in cAMP/PKA/CREB/IRS2 axis by MR409 was associated with decrease in ß-cell death and improved insulin secretory function in mouse and human islets exposed to proinflammatory cytokines. The assessment of the effects of GHRH agonist MR-409 in a model of T1D induced by low-dose streptozotocin showed that mice treated with MR-409 exhibited better glucose homeostasis, higher insulin levels, and preservation of ß-cell mass. Increased IRS2 expression in ß-cells in the group treated with MR-409 corroborated the in vitro data and provided evidence for the underlying mechanism responsible for beneficial effects of MR-409 in vivo. Collectively, our data show that MR-409 is a novel therapeutic agent for the prevention and treatment of ß-cells death in T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Estreptozocina , Citocinas , Insulina
9.
J Biol Chem ; 300(9): 107611, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074637

RESUMO

In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet ß-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced ß-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible ß-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced ß-cell death and have shown that inhibiting PKCδ protects pancreatic ß-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic ß-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay ß-cell death and preserve ß-cell function in T1D.

10.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942724

RESUMO

Glucose sensing in pancreatic ß-cells depends on oxidative phosphorylation and mitochondria-derived signals that promote insulin secretion. Using mass spectrometry-based phosphoproteomics to search for downstream effectors of glucose-dependent signal transduction in INS-1E insulinoma cells, we identified the outer mitochondrial membrane protein SLC25A46. Under resting glucose concentrations, SLC25A46 was phosphorylated on a pair of threonine residues (T44/T45) and was dephosphorylated in response to glucose-induced Ca2+ signals. Overexpression of SLC25A46 in INS-1E cells caused complete mitochondrial fragmentation, resulting in a mild mitochondrial defect associated with lowered glucose-induced insulin secretion. In contrast, inactivation of the Slc25a46 gene resulted in dramatic mitochondrial hyperfusion, without affecting respiratory activity or insulin secretion. Consequently, SLC25A46 is not essential for metabolism-secretion coupling under normal nutrient conditions. Importantly, insulin-secreting cells lacking SLC25A46 had an exacerbated sensitivity to lipotoxic conditions, undergoing massive apoptosis when exposed to palmitate. Therefore, in addition to its role in mitochondrial dynamics, SLC25A46 plays a role in preventing mitochondria-induced apoptosis in INS-E cells exposed to nutrient stress. By protecting mitochondria, SLC25A46 might help to maintain ß-cell mass essential for blood glucose control.


Assuntos
Células Secretoras de Insulina , Neoplasias Pancreáticas , Animais , Ratos , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Fosfato/metabolismo
11.
Exp Cell Res ; 440(2): 114134, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901790

RESUMO

Individuals with type 2 diabetes mellitus frequently display heightened levels of palmitic acid (PA) in their serum, which may lead to ß-cell damage. The involvement of ferroptosis, a form of oxidative cell death in lipotoxic ß-cell injury remains uncertain. Here, we have shown that PA induces intracellular lipid peroxidation, increases intracellular Fe2+ content and decreases intracellular glutathione peroxidase 4 (GPX4) expression. Furthermore, PA causes distinct changes in pancreatic islets and INS-1 cells, such as mitochondrial atrophy and increased membrane density. Furthermore, the presence of the ferroptosis inhibitor has a significant mitigating effect on PA-induced ß-cell damage. Mechanistically, PA increased ceramide content and c-Jun N-terminal kinase (JNK) phosphorylation. The ceramide synthase inhibitor effectively attenuated PA-induced ß-cell damage and GPX4/Fe2+ abnormalities, while inhibiting JNK phosphorylation. Additionally, the JNK inhibitor SP600125 improved PA-induced cell damage. In conclusion, by promoting ceramide synthesis, PA inhibited GPX4 expression and increased intracellular Fe2+ to induce ß-cell ferroptosis. Moreover, JNK may be a downstream mechanism of ceramide-triggered lipotoxic ferroptosis in ß-cells.


Assuntos
Ceramidas , Ferroptose , Células Secretoras de Insulina , Ácido Palmítico , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ceramidas/metabolismo , Ácido Palmítico/farmacologia , Animais , Transdução de Sinais/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ratos , Peroxidação de Lipídeos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ferro/metabolismo
12.
Genes Dev ; 31(3): 228-240, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270515

RESUMO

Following differentiation during fetal development, ß cells further adapt to their postnatal role through functional maturation. While adult islets are thought to contain functionally mature ß cells, recent analyses of transgenic rodent and human pancreata reveal a number of novel heterogeneity markers in mammalian ß cells. The marked heterogeneity long after maturation raises the prospect that diverse populations harbor distinct roles aside from glucose-stimulated insulin secretion. In this review, we outline our current understanding of the ß-cell maturation process, emphasize recent literature on novel heterogeneity markers, and offer perspectives on reconciling the findings from these two areas.


Assuntos
Diferenciação Celular , Glucose/metabolismo , Células Secretoras de Insulina/citologia , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Biomarcadores , Humanos , Células Secretoras de Insulina/metabolismo
13.
Am J Physiol Cell Physiol ; 327(2): C462-C476, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912736

RESUMO

Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile, and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. ß-Cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in ß-cells. Here for the first time, we assessed the ß-cell autonomous mechanical and nonmechanical roles of keratin 8 in ß-cell function. We demonstrated the importance of keratin 8 in islet and ß-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.


Assuntos
Membrana Celular , Diabetes Mellitus Experimental , Transportador de Glucose Tipo 2 , Células Secretoras de Insulina , Queratina-8 , Mitocôndrias , Animais , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Camundongos , Queratina-8/metabolismo , Queratina-8/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Physiol Genomics ; 56(9): 621-633, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949617

RESUMO

Type 2 diabetes (T2D) is a common metabolic disease due to insufficient insulin secretion by pancreatic ß-cells in the context of insulin resistance. Islet molecular pathology reveals a role for protein misfolding in ß-cell dysfunction and loss with islet amyloid derived from islet amyloid polypeptide (IAPP), a protein coexpressed and cosecreted with insulin. The most toxic form of misfolded IAPP is intracellular membrane disruptive toxic oligomers present in ß-cells in T2D and in ß-cells of mice transgenic for human IAPP (hIAPP). Prior work revealed a high degree of overlap of transcriptional changes in islets from T2D and prediabetic 9- to 10-wk-old mice transgenic for hIAPP with most changes being pro-survival adaptations and therefore of limited therapeutic guidance. Here, we investigated islets from hIAPP transgenic mice at an earlier age (6 wk) to screen for potential mediators of hIAPP toxicity that precede predominance of pro-survival signaling. We identified early suppression of cholesterol synthesis and trafficking along with aberrant intra-ß-cell cholesterol and lipid deposits and impaired cholesterol trafficking to cell membranes. These findings align with comparable lipid deposits present in ß-cells in T2D and increased vulnerability to develop T2D in individuals taking medications that suppress cholesterol synthesis.NEW & NOTEWORTHY ß-Cell failure in type 2 diabetes (T2D) is characterized by ß-cell misfolded protein stress due to the formation of toxic oligomers of islet amyloid polypeptide (IAPP). Most transcriptional changes in islets in T2D are pro-survival adaptations consistent with the slow progression of ß-cell loss. In the present study, investigation of the islet transcriptional signatures in a mouse model of T2D expressing human IAPP revealed decreased cholesterol synthesis and trafficking as a plausible early mediator of IAPP toxicity.


Assuntos
Colesterol , Diabetes Mellitus Tipo 2 , Homeostase , Células Secretoras de Insulina , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos Transgênicos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Colesterol/metabolismo , Camundongos , Humanos , Masculino , Transdução de Sinais
15.
J Biol Chem ; 299(12): 105405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229396

RESUMO

Gestational diabetes mellitus (GDM) is characterized by glucose intolerance in pregnant women without a previous diagnosis of diabetes. While the etiology of GDM remains elusive, the close association of GDM with increased maternal adiposity and advanced gestational age implicates insulin resistance as a culpable factor for the pathogenesis of GDM. Pregnancy is accompanied by the physiological induction of insulin resistance in the mother secondary to maternal weight gain. This effect serves to spare blood glucose for the fetus. To overcome insulin resistance, maternal ß-cells are conditioned to release more insulin into the blood. Such an adaptive response, termed ß-cell compensation, is essential for maintaining normal maternal metabolism. ß-cell compensation culminates in the expansion of ß-cell mass and augmentation of ß-cell function, accounting for increased insulin synthesis and secretion. As a result, a vast majority of mothers are protected from developing GDM during pregnancy. In at-risk pregnant women, ß-cells fail to compensate for maternal insulin resistance, contributing to insulin insufficiency and GDM. However, gestational ß-cell compensation ensues in early pregnancy, prior to the establishment of insulin resistance in late pregnancy. How ß-cells compensate for pregnancy and what causes ß-cell failure in GDM are subjects of investigation. In this mini-review, we will provide clinical and preclinical evidence that ß-cell compensation is pivotal for overriding maternal insulin resistance to protect against GDM. We will highlight key molecules whose functions are critical for integrating gestational hormones to ß-cell compensation for pregnancy. We will provide mechanistic insights into ß-cell decompensation in the etiology of GDM.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Células Secretoras de Insulina , Feminino , Humanos , Gravidez , Glicemia/metabolismo , Diabetes Gestacional/patologia , Teste de Tolerância a Glucose , Insulina , Células Secretoras de Insulina/fisiologia
16.
J Biol Chem ; 299(3): 102994, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773802

RESUMO

Nitric oxide (NO) plays a dual role in regulating DNA damage response (DDR) signaling in pancreatic ß-cells. As a genotoxic agent, NO activates two types of DDR signaling; however, when produced at micromolar levels by the inducible isoform of NO synthase, NO inhibits DDR signaling and DDR-induced apoptosis in a ß-cell-selective manner. DDR signaling inhibition by NO correlates with mitochondrial oxidative metabolism inhibition and decreases in ATP and NAD+. Unlike most cell types, ß-cells do not compensate for impaired mitochondrial oxidation by increasing glycolytic flux, and this metabolic inflexibility leads to a decrease in ATP and NAD+. Here, we used multiple analytical approaches to determine changes in intermediary metabolites in ß-cells and non-ß-cells treated with NO or complex I inhibitor rotenone. In addition to ATP and NAD+, glycolytic and tricarboxylic acid cycle intermediates as well as NADPH are significantly decreased in ß-cells treated with NO or rotenone. Consistent with glucose-6-phosphate residing at the metabolic branchpoint for glycolysis and the pentose phosphate pathway (NADPH), we show that mitochondrial oxidation inhibitors limit glucose uptake in a ß-cell-selective manner. Our findings indicate that the ß-cell-selective inhibition of DDR signaling by NO is associated with a decrease in ATP to levels that fall significantly below the KM for ATP of glucokinase (glucose uptake) and suggest that this action places the ß-cell in a state of suspended animation where it is metabolically inert until NO is removed, and metabolic function can be restored.


Assuntos
NAD , Óxido Nítrico , Óxido Nítrico/metabolismo , NADP/metabolismo , NAD/metabolismo , Rotenona/farmacologia , Dano ao DNA , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo
17.
J Biol Chem ; 299(8): 104986, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392854

RESUMO

Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic ß-cells, we created genetically engineered ß-cell-specific (ß-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in ß-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in ß-SKO mice compared to controls. Consistently, treating isolated ß-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of ß-SKO islets revealed reduced transcription of ß-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The ß-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in ß- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in ß-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of ß-cell identity.


Assuntos
3-Hidroxiacil-CoA Desidrogenase , Aminoácidos , Hiperinsulinismo Congênito , Hipoglicemia , Secreção de Insulina , Células Secretoras de Insulina , Animais , Camundongos , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Hipoglicemia/enzimologia , Hipoglicemia/genética , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Camundongos Knockout , 3-Hidroxiacil-CoA Desidrogenase/deficiência , 3-Hidroxiacil-CoA Desidrogenase/genética , Células Secretoras de Insulina/enzimologia , Hiperinsulinismo Congênito/genética
18.
Am J Physiol Endocrinol Metab ; 327(1): E103-E110, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775725

RESUMO

The incretin axis is an essential component of postprandial insulin secretion and glucose homeostasis. There are two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which exert multiple actions throughout the body. A key cellular target for the incretins are pancreatic ß-cells, where they potentiate nutrient-stimulated insulin secretion. This feature of incretins has made this system an attractive target for therapeutic interventions aimed at controlling glycemia. Here, we discuss the role of GIP in both ß-cells and α-cells within the islet, to stimulate insulin and glucagon secretion, respectively. Moreover, we discuss how glucagon secretion from α-cells has important insulinotropic actions in ß-cells through an axis termed α- to ß-cell communication. These recent advances have elevated the potential of GIP and glucagon as a therapeutic targets, coinciding with emerging compounds that pharmacologically leverage the actions of these two peptides in the context of diabetes and obesity.


Assuntos
Polipeptídeo Inibidor Gástrico , Glucagon , Secreção de Insulina , Ilhotas Pancreáticas , Animais , Humanos , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos
19.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34345920

RESUMO

The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic ß-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in ß-cell function has not been determined. Here, we used various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation and function. Ablation of TRPM7 within pancreatic progenitors reduced pancreatic size, and α-cell and ß-cell mass. This resulted in modestly impaired glucose tolerance. However, TRPM7 ablation following endocrine specification or in adult mice did not impact endocrine expansion or glucose tolerance. As TRPM7 regulates cell proliferation, we assessed how TRPM7 influences ß-cell hyperplasia under insulin-resistant conditions. ß-Cell proliferation induced by high-fat diet was significantly decreased in TRPM7-deficient ß-cells. The endocrine roles of TRPM7 may be influenced by cation flux through the channel, and indeed we found that TRPM7 ablation altered ß-cell Mg2+ and reduced the magnitude of elevation in ß-cell Mg2+ during proliferation. Together, these findings revealed that TRPM7 controls pancreatic development and ß-cell proliferation, which is likely due to regulation of Mg2+ homeostasis.


Assuntos
Proliferação de Células/genética , Dieta Hiperlipídica , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Intolerância à Glucose/genética , Homeostase/genética , Magnésio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPM/genética
20.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R552-R566, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586887

RESUMO

Nitric oxide is produced at low micromolar levels following the induction of inducible nitric oxide synthase (iNOS) and is responsible for mediating the inhibitory actions of cytokines on glucose-stimulated insulin secretion by islets of Langerhans. It is through the inhibition of mitochondrial oxidative metabolism, specifically aconitase and complex 4 of the electron transport chain, that nitric oxide inhibits insulin secretion. Nitric oxide also attenuates protein synthesis, induces DNA damage, activates DNA repair pathways, and stimulates stress responses (unfolded protein and heat shock) in ß-cells. In this report, the time- and concentration-dependent effects of nitric oxide on the expression of six genes known to participate in the response of ß-cells to this free radical were examined. The genes included Gadd45α (DNA repair), Puma (apoptosis), Hmox1 (antioxidant defense), Hsp70 (heat shock), Chop (UPR), and Ppargc1α (mitochondrial biogenesis). We show that nitric oxide stimulates ß-cell gene expression in a narrow concentration range of ∼0.5-1 µM or levels corresponding to iNOS-derived nitric oxide. At concentrations greater than 1 µM, nitric oxide fails to stimulate gene expression in ß-cells, and this is associated with the inhibition of mitochondrial oxidative metabolism. This narrow concentration range of responses is ß-cell selective, as the actions of nitric oxide in non-ß-cells (α-cells, mouse embryonic fibroblasts, and macrophages) are concentration dependent. Our findings suggest that ß-cells respond to a narrow concentration range of nitric oxide that is consistent with the levels produced following iNOS induction, and that these concentration-dependent actions are selective for insulin-containing cells.


Assuntos
Proteínas Reguladoras de Apoptose , Regulação da Expressão Gênica , Células Secretoras de Insulina , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Animais , Óxido Nítrico/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase (Desciclizante)/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Insulina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Ratos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Membrana , Heme Oxigenase-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa