RESUMO
Egg-laying mammals (monotremes) are a sister clade of therians (placental mammals and marsupials) and a key clade to understand mammalian evolution. They are classified into platypus and echidna, which exhibit distinct ecological features such as habitats and diet. Chemosensory genes, which encode sensory receptors for taste and smell, are believed to adapt to the individual habitats and diet of each mammal. In this study, we focused on the molecular evolution of bitter taste receptors (TAS2Rs) in monotremes. The sense of bitter taste is important to detect potentially harmful substances. We comprehensively surveyed agonists of all TAS2Rs in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) and compared their functions with orthologous TAS2Rs of marsupial and placental mammals (i.e., therians). As results, the agonist screening revealed that the deorphanized monotreme receptors were functionally diversified. Platypus TAS2Rs had broader receptive ranges of agonists than those of echidna TAS2Rs. While platypus consumes a variety of aquatic invertebrates, echidna mainly consumes subterranean social insects (ants and termites) as well as other invertebrates. This result indicates that receptive ranges of TAS2Rs could be associated with feeding habits in monotremes. Furthermore, some orthologous receptors in monotremes and therians responded to ß-glucosides, which are feeding deterrents in plants and insects. These results suggest that the ability to detect ß-glucosides and other substances might be shared and ancestral among mammals.
Assuntos
Ornitorrinco , Tachyglossidae , Animais , Eutérios/genética , Feminino , Mamíferos/genética , Placenta , Ornitorrinco/genética , Gravidez , PaladarRESUMO
In the processing field, there is a saying that "seed drugs be stir-fried". Bitter almond (BA) is a kind of seed Chinese medicine. BA need be used after being fried. To distinguish raw bitter almonds (RBA) from processed products and prove the rationality of "seed drugs be stir-fried", we analyzed the RBA and five processed products (scalded bitter almonds, fried bitter almonds, honey fried bitter almonds, bran fried bitter almonds, bitter almonds cream) using RP-HPLC fingerprints and chemometric methods. The similarity between RBA and processed products was 0.733â¼0.995. Hierarchically clustered heatmap was used to evaluate the changes in components. Principal component analysis (PCA) was used for classification, and all samples are distinguished according to RBA and five processing methods. Six chemical markers were obtained by partial least squares discriminant analysis (PLS-DA). The content and degradation rate of amygdalin and ß-glucosidase activity were determined. Compared with RBA, the content and degradation rate of amygdalin, and ß-glucosidase activity were increased in bitter almonds cream. The content and degradation rate were decreased, and ß-glucosidase was inactivated in other processed products. The above results showed that stir-frying had the best effect. The results showed that processing can ensure the stability of RBA quality, and the saying "seed drugs be stir-fried" is reasonable.
Assuntos
Amigdalina , Celulases , Medicamentos de Ervas Chinesas , Prunus dulcis , Amigdalina/química , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Prunus dulcis/químicaRESUMO
Streptococcus pyogenes (group A Streptococcus [GAS]), a major human-specific pathogen, relies on efficient nutrient acquisition for successful infection within its host. The phosphotransferase system (PTS) couples the import of carbohydrates with their phosphorylation prior to metabolism and has been linked to GAS pathogenesis. In a screen of an insertional mutant library of all 14 annotated PTS permease (EIIC) genes in MGAS5005, the annotated ß-glucoside PTS transporter (bglP) was found to be crucial for GAS growth and survival in human blood and was validated in another M1T1 GAS strain, 5448. In 5448, bglP was shown to be in an operon with a putative phospho-ß-glucosidase (bglB) downstream and a predicted antiterminator (licT) upstream. Using defined nonpolar mutants of the ß-glucoside permease (bglP) and ß-glucosidase enzyme (bglB) in 5448, we showed that bglB, not bglP, was important for growth in blood. Furthermore, transcription of the licT-blgPB operon was found to be repressed by glucose and induced by the ß-glucoside salicin as the sole carbon source. Investigation of the individual bglP and bglB mutants determined that they influence in vitro growth in the ß-glucoside salicin; however, only bglP was necessary for growth in other non-ß-glucoside PTS sugars, such as fructose and mannose. Additionally, loss of BglP and BglB suggests that they are important for the regulation of virulence-related genes that control biofilm formation, streptolysin S (SLS)-mediated hemolysis, and localized ulcerative lesion progression during subcutaneous infections in mice. Thus, our results indicate that the ß-glucoside PTS transports salicin and its metabolism can differentially influence GAS pathophysiology during soft tissue infection.
Assuntos
Álcoois Benzílicos/metabolismo , Glucosídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Infecções dos Tecidos Moles/patologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Repressão Catabólica , Regulação Bacteriana da Expressão Gênica , Hemólise/genética , Humanos , Camundongos , Viabilidade Microbiana/genética , Mutação , Óperon , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Infecções dos Tecidos Moles/metabolismo , Infecções dos Tecidos Moles/microbiologia , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Açúcares/metabolismo , Virulência/genéticaRESUMO
Oxyresveratrol and gnetol are naturally occurring stilbene compounds, which have diverse pharmacological activities. The water-insolubility of these compounds limits their further pharmacological exploitation. The glycosylation of bioactive compounds can enhance their water-solubility, physicochemical stability, intestinal absorption, and biological half-life, and improve their bio- and pharmacological properties. Plant cell cultures are ideal systems for propagating rare plants and for studying the biosynthesis of secondary metabolites. Furthermore, the biotransformation of various organic compounds has been investigated as a target in the biotechnological application of plant cell culture systems. Cultured plant cells can glycosylate not only endogenous metabolic intermediates but also xenobiotics. In plants, glycosylation reaction acts for decreasing the toxicity of xenobiotics. There have been a few studies of glycosylation of exogenously administrated stilbene compounds at their 3- and 4'-positions by cultured plant cells of Ipomoea batatas and Strophanthus gratus so far. However, little attention has been paid to the glycosylation of 2'-hydroxy group of stilbene compounds by cultured plant cells. In this work, it is described that oxyresveratrol (3,5,2',4'-tetrahydroxystilbene) was transformed to 3-, 2'-, and 4'-ß-glucosides of oxyresveratrol by biotransformation with cultured Phytolacca americana cells. On the other hand, gnetol (3,5,2',6'-tetrahydroxystilbene) was converted into 2'-ß-glucoside of gnetol by cultured P. americana cells. Oxyresveratrol 2'-ß-glucoside and gnetol 2'-ß-glucoside are two new compounds. This paper reports, for the first time, the glycosylation of stilbene compounds at their 2'-position by cultured plant cells.
Assuntos
Phytolacca americana/metabolismo , Células Vegetais/metabolismo , Extratos Vegetais/química , Estilbenos/química , Células Cultivadas , Glicosilação , Espectroscopia de Ressonância Magnética , Xenobióticos/metabolismoRESUMO
Beta (ß)-glucosidase 2 (GBA2) is deficient in a form of human spastic paraplegia due to defects in GBA2 (SPG46). GBA2 was proposed as a modifier of Gaucher disease, a lysosomal storage disease resulting from deficient ß-glucosidase 1; GBA1. Current GBA2 activity assays using artificial substrates incompletely model the activity encountered in vivo. We studied GBA2 activity, using lithocholic acid ß-glucoside or glucosylceramide as natural ß-glucosidase substrates in murine tissues or cultured patient fibroblasts with the pathologic genotypes: Gba1-/-; Gba2-/-; GBA1-/-; GBA2+/- and found expected and unexpected deviations from normal controls.
Assuntos
Encéfalo/metabolismo , Glucosídeos/metabolismo , Glucosilceramidas/metabolismo , Ácido Litocólico/metabolismo , beta-Glucosidase/metabolismo , Animais , Fibroblastos/metabolismo , Glucosilceramidase , Humanos , Camundongos , Especificidade por SubstratoRESUMO
Cancer chemotherapy has several limitations such as often insufficient differentiation between malign tissue and benign tissue. The clinical utility of the pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are inadequate because of the lack of selectivity for tumor tissues, high reactivity of the pharmacophoric imine functionality, low water solubility, and stability. To address these limitations two new ß-glucoside prodrugs of PBDs have been synthesized and evaluated for their potential use in selective therapy of solid tumors by ADEPT. The preliminary studies reveal the prodrugs are much less toxic compared to the parent moieties. These prodrugs are activated by ß-glucosidase to produce the active cytotoxic moiety signifying their utility in ADEPT of cancer. The prodrugs 1a and 1b were evaluated for their cytotoxic activity in three human cancer cell lines, i.e., A375, MCF-7 and HT-29 by employing MTT assay. The results reveal that the prodrugs have shown significant cytotoxic activity in the presence of enzyme. Another important property of these molecules is their enhanced water solubility and stability, which are essential for a molecule to be an effective drug.
Assuntos
Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Glucosídeos/farmacologia , Pró-Fármacos/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Benzodiazepinas/síntese química , Benzodiazepinas/metabolismo , Benzodiazepinas/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glucosídeos/síntese química , Glucosídeos/metabolismo , Glucosídeos/toxicidade , Humanos , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Pró-Fármacos/toxicidade , Pirróis/síntese química , Pirróis/metabolismo , Pirróis/toxicidade , beta-Glucosidase/metabolismoRESUMO
The enzymatic hydrolysis of cellulose and lignocellulosic materials is marked by a rate decrease along the reaction time. Cellobiohydrolase slow dissociation from the substrate and its inhibition by the cellobiose produced are relevant factors associated to the rate decrease. In that sense, addition of ß-glucosidases to the enzyme cocktails employed in cellulose enzymatic hydrolysis not only produces glucose as final product but also reduces the cellobiohydrolase inhibition by cellobiose. The digestive ß-glucosidase GH1 from the fall armyworm Spodoptera frugiperda, hereafter called Sfßgly, containing the mutation L428V showed an increased kcat for cellobiose hydrolysis. In comparison to assays conducted with the wild-type Sfßgly and cellobiohydrolase TrCel7A, the presence of the mutant L428V increased in 5 fold the initial rate of crystalline cellulose hydrolysis and reduced to one quarter the time needed to TrCel7A produce the maximum glucose yield. As our results show that mutant L428V complement the action of TrCel7A, the introduction of the equivalent replacement in ß-glucosidases is a promising strategy to reduce costs in the enzymatic hydrolysis of lignocellulosic materials.
RESUMO
By a global search of the genome database of Aspergillus oryzae, we found 23 genes encoding putative ß-glucosidases, among which 10 genes with a signal peptide belonging to glycoside hydrolase family 3 (GH3) were overexpressed in A. oryzae using the improved glaA gene promoter. Consequently, crude enzyme preparations from three strains, each harboring the genes AO090038000223 (bglA), AO090103000127 (bglF), and AO090003001511 (bglJ), showed a substrate preference toward p-nitrophenyl-ß-d-glucopyranoside (pNPGlc) and thus were purified to homogeneity and enzymatically characterized. All the purified enzymes (BglA, BglF, and BglJ) preferentially hydrolyzed aryl ß-glycosides, including pNPGlc, rather than cellobiose, and these enzymes were proven to be aryl ß-glucosidases. Although the specific activity of BglF toward all the substrates tested was significantly low, BglA and BglJ showed appreciably high activities toward pNPGlc and arbutin. The kinetic parameters of BglA and BglJ for pNPGlc suggested that both the enzymes had relatively higher hydrolytic activity toward pNPGlc among the fungal ß-glucosidases reported. The thermal and pH stabilities of BglA were higher than those of BglJ, and BglA was particularly stable in a wide pH range (pH 4.5-10). In contrast, BglJ was the most heat- and alkaline-labile among the three ß-glucosidases. Furthermore, BglA was more tolerant to ethanol than BglJ; as a result, it showed much higher hydrolytic activity toward isoflavone glycosides in the presence of ethanol than BglJ. This study suggested that the mining of novel ß-glucosidases exhibiting higher activity from microbial genome sequences is of great use for the production of beneficial compounds such as isoflavone aglycones.
Assuntos
Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo , Arbutina/metabolismo , Celobiose/metabolismo , Estabilidade Enzimática , Etanol/metabolismo , Genoma Bacteriano/genética , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Isoflavonas/metabolismo , Cinética , Regiões Promotoras Genéticas/genética , Sinais Direcionadores de Proteínas/genética , Especificidade por Substrato , Temperatura , beta-Glucosidase/genéticaRESUMO
A glycosidically bound fraction was prepared by adsorbing a 80% methanol extract from fresh rhizomes of ginger onto a column of Amberlite XAD-2 resin and successively eluting with ethyl acetate or methanol. Enzymatic hydrolysis of this fraction with an acetone powder prepared from fresh ginger and commercial glycosidase liberated such alcohols as geraniol, 2-heptanol, α-terpineol, nerol, linalool, and citronellol, suggesting that fresh ginger included glycosides and glycosidase. The ethyl acetate eluate was chromatographed by an ODS flash column and then HPLC to isolate the ß-glucopyranosides of 5-hydroxyborneol, 1,8-epoxy-p-menthan-3-ol, (2E, 6E)- and (2E, 6Z)-3,7-dimethyl-8-hydroxyoctadien-1-ol, 2-heptanol, geraniol, nerol, (R)-linalool, and citronellol. All the glucosides, except for 5-hydroxybornyl-O-ß-D-glucopyranoside, were identified for the first time in the rhizome of ginger, and many of their aglycons were major constituents of the essential oil. The results indicate that these glucosides are aroma precursors of fresh ginger.